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ABSTRACT DNA under torsional strain undergoes a buckling transition that is the fundamental step in plectoneme nucleation
and supercoil dynamics, which are critical for the processing of genomic information. Despite its importance, quantitative models
of the buckling transition, in particular to also explain the surprising two-orders-of-magnitude difference between the buckling
times for RNA and DNA revealed by single-molecule tweezers experiments, are currently lacking. Additionally, little is known
about the configurations of the DNA during the buckling transition because they are not directly observable experimentally.
Here, we use a discrete worm-like chain model and Brownian dynamics to simulate the DNA/RNA buckling transition. Our sim-
ulations are in good agreement with experimentally determined parameters of the buckling transition. The simulations show that
the buckling time strongly and exponentially depends on the bending stiffness, which accounts for more than half the measured
difference between DNA and RNA. Analyzing the microscopic conformations of the chain revealed by our simulations, we find
clear evidence for a solenoid-shaped transition state and a curl intermediate. The curl intermediate features a single loop and
becomes increasingly populated at low forces. Taken together, the simulations suggest that the worm-like chain model can ac-
count semiquantitatively for the buckling dynamics of both DNA and RNA.

SIGNIFICANCE Torsionally strained DNA, as is commonly found in the cell, can undergo a buckling transition to form
plectonemic supercoils, which play critical roles in DNA processing. Single-molecule experiments have characterized the
dynamics and stretching force dependence of the buckling transition for both double-stranded DNA and RNA and found a
surprising two-orders-of-magnitude difference in the buckling timescales between the two molecules. We use Brownian
dynamics simulations to predict the buckling dynamics and to understand the surprising difference between DNA and RNA.
Our simulations also give access to the microscopic conformations of the chain that are inaccessible experimentally.
Analysis of the simulations identified a curl intermediate that is increasingly populated at low stretching forces and might be
observable experimentally.

INTRODUCTION thus fundamental for a biophysical understanding of
genome readout and repair.

When torsionally strained, an initially linear stretch of
DNA will eventually undergo a buckling transition, adopting
bent and looped conformations, in which some of the
torsional strain is released. The DNA buckling transition
has been studied under precisely controlled conditions at
the level of single molecules using magnetic and optical
tweezers (11-13). These approaches control and monitor
the configuration of single DNA molecules using the pairs
of conjugate variables force-extension and torque-linking
number. Single-molecule measurements have provided
detailed information about many of the equilibrium proper-
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DNA stores the genetic information in all cellular life. The
readout and maintenance of DNA generates torsional strains
and DNA supercoiling (1-6). Conversely, twisting and
bending strains of the DNA helix regulate many genomic
processes (7,8). In the cell, DNA is organized in topological
domains, operational units of the genome wherein DNA
twisting and bending deformations cannot change indepen-
dently (9,10). The interplay of bending and twisting fluctu-
ations in ~kb-length DNA and the associated dynamics are
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force and solution conditions. In addition, recent measure-
ments with magnetic and optical torque tweezers quantified
the dynamics of the buckling transition. These experiments
revealed that the characteristic timescale of DNA buckling
depends on salt concentration, applied stretching force,
and (weakly) on the DNA length and is in the range of
10-100 ms in tweezers experiments with micrometer-sized
particles attached to the DNA (11-15). Experiments on
double-stranded RNA found a similar buckling transition
with equilibrium properties close to DNA but, surprisingly,
an approximately two-orders-of-magnitude slower rate of
buckling for RNA compared to DNA (14).

The timescale of buckling is believed to be rate limiting
for the dynamics of DNA plectonemes, as a first direct mea-
surement of plectoneme dynamics by fluorescent imaging
(16) found that within the time resolution of the approach
(20 ms), a plectoneme can disappear at one site and give
rise to the formation of a new plectoneme several microns
away along the chain. However, despite its biological rele-
vance and increasingly detailed experimental characteriza-
tion, the dynamics of DNA buckling are currently not
understood on a quantitative level. The equilibrium proper-
ties of the buckling transition can be accounted for in the
framework of a worm-like chain (WLC) model that de-
scribes double-stranded DNA or RNA as continuous, flex-
ible rods with fixed bending and torsional stiffnesses
(13,17,18). Daniels et al. extended the framework of the
WLC model to the dynamics of the buckling transition by
employing Kramer’s theory to compute the buckling rate
(19). For a WLC with homogeneous properties, this
approach led to no energy barrier for buckling, in contrast
to the experimental observations. After adding disorder
due to intrinsic bending, an energy barrier was recovered,
and buckling times in the range of 100 us were predicted,
several orders of magnitude faster than the experimental ob-
servations. Although the discrepancy could be partially
rationalized by the presence of micrometer-sized particles
in the experimental setup, our current understanding of the
dynamics of the nucleic acid buckling transition remains
incomplete.

Here, we use Brownian dynamics simulations of a discre-
tized WLC model to quantitatively analyze the buckling dy-
namics. Specifically, we ask whether a simple WLC
description with the bending and torsional stiffnesses as
the only mechanical parameters can account for the buck-
ling dynamics of nucleic acids or whether anharmonic ef-
fects and/or structural transitions have to be taken into
account. This question is also interesting in the light of
several reports suggesting anomalous, “beyond WLC” flex-
ibility of DNA on short length scales (20-24) that might
facilitate buckling. A related salient question is how to
explain the two-orders-of-magnitude difference in buckling
rates between DNA and RNA, given that their bending and
torsional rigidities differ by, at most, 20% (14). To address
this question, we analyze the effect of these mechanical pa-
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rameters on the buckling rate in our simulations. Finally, we
focus on the conformations of the nucleic acid chain during
the buckling transition. The literature suggests a “soliton”
transition state (19,25) and a “curl” intermediate state
(17,26). We inspect these states based on the joint distribu-
tion in the two-dimensional space of the writhe and exten-
sion observables, as well as on the corresponding
conformations, as obtained from our simulations.

MATERIALS AND METHODS

We use a discretized WLC for the simulation of double-stranded DNA
and RNA (27-31). The model corresponds to a bead-spring model consist-
ing of N + 1 beads and N springs connecting the beads. The positions of the
beads are denoted by 7;, and the conformation of each spring is specified by
its segment vector s; = ;1| — 7. To keep track of the twist in the confor-
mation of the chain, we use an additional rotational orientation vectorf,. of
unit length (lf i | = 1) for each segment, which is Pnhogonal to the segment
direction dé¢; = 5;/|s;|. By defining g; = &; x f; we obtain three ortho-
normal vectors spanning a local coordinate system for each segment (see
Fig. 1 A). The following subsections introduce the energy functions, the
boundary conditions, and the equations of motion that govern the dynamics
of the discretized WLC model. Further subsections rationalize the param-
eter values used for our simulations (see also Table 1), define the observ-
ables calculated from the simulated trajectories, and discuss the rescaling
procedure for comparison with experiments.

Energy functions of the model

The model describes all elastic properties of double-stranded DNA and
RNA within the harmonic approximation. Each segment of the chain has
an associated stretching energy

EY = 25(5 ] —h)’, (1)

where [, is the equilibrium spring length and ¢ is the stiffness parameter.
The bending energy has a contribution from each consecutive pair of seg-
ments and depends on the bending angle (; at bead i, defined via
cos(B;) = &;+¢;_1 with i = 1, ..., N — 1. The associated contribution to
the total bending energy is

O _ ksTpy,
! 2l

67, (@)

where py, is the bending persistence length. Similarly, the contribution to the
torsional energy at bead i is given by
(t) ksTp;
EYV =2l
21y

3

where p, is the torsional persistence length and the twist angle 6; between
the adjacent segments i — 1 and i can be calculated as (31)

an(0) = il @

(see the Supporting Materials and Methods for a derivation). We describe
electrostatic interactions between segments within the Debye-Hiickel
approximation (29) by placing A point charges on each segment with
even spacing. The charges are chosen so as to be consistent with the known
effective charge density » of DNA or RNA (see below). This leads to the
electrostatic energy
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FIGURE 1 (A) Schematic representation of the basic experimental setup
and the discretized WLC model. A magnetic particle is attached to a dou-
ble-stranded DNA or RNA molecule. A stretching force is applied to the
particle by magnetic tweezers, which are also used to rotate the particle,
thus twisting the molecule. The magnification depicts the discretized poly-
mer model together with the notation introduced in Materials and Methods.
(B) Quasiequilibrium response of DNA to supercoiling at different stretch-
ing forces is shown. The simulation data (connected dots) are obtained by
averaging the DNA extension z over long simulation trajectories at fixed
linking number and stretching force. The excess linking number Lk is re-
scaled to the supercoiling density ¢ (see Materials and Methods). Data
for stretching forces of 1, 2, and 3 pN are shown as indicated. At a certain
supercoiling density, the DNA buckles, abruptly forming a plectoneme, as
illustrated in the inset. The buckling point is indicated by an arrow for each
force. Crosses and triangles show experimental data from (14,33), obtained
at the same forces, with 3.4 kb DNA at 100 mM NaCl (triangles) and 8 kb
DNA with a phosphate-buffered saline buffer (crosses). To see this figure in
color, go online.

Z Z exp K mn) (rc - rmn)v (5)

=mt T4+Neg Frn

where E is the dielectric constant of the medium (water), r,,,, is the distance
between point charges m and n, and « is the inverse Debye length. The sum
excludes the interactions between the point charges on adjacent segments,
as indicated by the offset N, in the second summation range. The underly-
ing rationale is that the effect of the interaction between adjacent segments
is already included in the bending potential. To limit the computational cost
incurred by the electrostatic energy, interactions with distant segments are
neglected by introducing a cutoff at radius r, via the Heaviside step function
H. The cutoff radius is chosen such that the neglected forces are several or-
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ders of magnitude smaller than the average value of any other force (31).
Finally, we use the same method as (32) to avoid crossing of segments,
i.e., we add an additional potential E™P that generates a strong repulsive
force as soon as segments come closer than 2 nm, approximating the steric
repulsion between double-stranded DNA or RNA segments.

Boundary and initial conditions

In the magnetic tweezer experiments, the DNA or RNA is attached with
one end to a surface and with the other end to a micrometer-sized mag-
netic particle, which exerts a pulling force on the molecule. Because the
particle is large on molecular scales, we can represent both of these
boundaries as impenetrable flat surfaces in our model. We choose our co-
ordinate system such that both of these surfaces are orthogonal to the z
axis. The lower (fixed) surface is the x-y plane, and the position of the
first bead is fixed to the origin. The upper surface moves with the z-co-
ordinate of the last bead. In the experiments, the attachment of the mole-
cule is such that no rotation is possible so that the torsional strain cannot
relax at these points. Analogously, our model does not allow the first and
last segment to rotate. This ensures that the linking number remains con-
stant (see below), closely mimicking the situation in conventional mag-
netic tweezers with their high rotational trap stiffness (33). Explicitly
accounting for the short-range repulsion of the impenetrable boundary
surfaces on all inner beads of the chain (i =1, ..., N — 1) is also impor-
tant for the conservation of the linking number because this prevents the
chain from looping around one of its ends. We implement this with
forces of the form

0, (zv41 — 2i) > 6Ly,
— 7> , 0<(zyp1 —z:) <6Ly

(ZN+1 - Zi) <0
(6)

for the upper surface and an analogous expression F;"°" for the lower sur-
face. Here, L, = 1 nm is the characteristic length scale for the repulsion, and
Fy, = 35 pN is the repulsion force, chosen to be large enough that the chain
cannot change its linking number. The stretching force exerted by the
magnetic particle corresponds to an external force F in the positive z-di-
rection, which we add to the total force acting on the last bead of the chain.
Our model ignores the small lateral movement of the magnetic particle and
allows the last segment to only move in the z-direction.

Our initial chain configuration is a straight line along the z axis. Because
the vectors f, are used only to describe the relative twist of segments, the
rotational angle of f(, for the first segment can be chosen a.rbltrarlly The re-
maining orientation vectorsf, are then initialized relative to fo, .g., fora
chain that is initially untwisted, f i f o- For a twisted initial configuration,
with (excess) linking number Lk, we initialize the f, such that Lk turns are
evenly distributed over all segments.

Brownian dynamics

The Brownian dynamics simulations of the discretized WLC model are
based on the assumption of overdamped Langevin dynamics, in which
each bead of the bead-spring model experiences a hydrodynamic drag
that is calculated from Stokes law with a hydrodynamic radius a. Hydrody-
namic interactions between the beads are neglected because they are
computationally expensive and the effects of these interactions are typically
small (30,31). These assumptions amount to an isotropic diffusion tensor,

Dij :DO Iéiﬁ (7)
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TABLE 1 Parameters Used for the Simulation of Double-Stranded DNA and RNA Molecules
Parameter Symbol Value DNA Value RNA
Environment Temperature T 298 K 298 K
Salt concentration Cy 320 mM 320 mM
Inverse Debye length K 1.261 nm ™' 1.261 nm™'
Viscosity n 0.001 kg/s m 0.001 kg/s m
Dielectric constant water e 80 80
Chain Contour length L 650 nm 650 nm
Bending persistence length Po 45 nm 57 nm
Torsional persistence length De 90 nm 80 nm
Simulation Segment equilibrium length Iy 5 nm 5 nm
Stretching stiffness parameter 0 0.08 0.08
Effective charge density v 8.0le” /nm 8.0le” /nm
Point charges per segment A 3 3
Excluded volume force Frep 35 pN 35 pN
Bead hydrodynamic radius a 1.6 nm 1.7 nm
Rotational diffusion radius Trot 1.0 nm 1.2 nm
Surface force length scale I8 1 nm 1 nm
Surface force Fy 35 pN 35 pN
Time step At 0.2 ns 0.2 ns
with Dy = kgT/67na the diffusion constant of a single bead and 7 the sol- <R‘1> =0, <R’l ®k‘j> = 2D, I 4t 5,7, (14)

vent viscosity. The hydrodynamic drag for the rotation of a segment about
its longitudinal axis is estimated by assuming a cylinder with radius r,o,
which yields an approximate rotational diffusion coefficient of (30,34)

ksT
Doy = Biz ®)
47777("r0t) lO

The simulations are based on a second-order Brownian dynamics algo-
rithm (32,35,36). In this algorithm, the displacement after a time step At
is calculated in two steps. In the first half step, the beads are displaced ac-
cording to

P (t+ A1) = ()+D Y A1+ R, 9)
and the segments are rotated by the angles
(¢
A¢! —D,mk()At+q§ (10)
B

Here, the total force F; on the ith bead is determined by analytically
calculating the derivative of the potentials with respect to 7; and adding
the forces from the boundary conditions and the external stretching force,

[ Z(Ej(g +EJ<»b) +E§l)) FE L g | (11
J

+(FE 4 F 4 F 0,0 )2, (12)

where 0;; is the Kronecker delta symbol. Analogously, the total torque I’; is
calculated by analytically differentiating the torsional energy with respect

to ¢,
=0, SE 0
J

The random displacements R; are drawn from a Gaussian distribution
with the first and second moments

where ® denotes the outer product and I the identity matrix. The random
rotation angles @; have a Gaussian distribution with

(@) = 0,(®,®;) = 2D,y 41 6. (15)

In the second half step, the bead positions are updated according to

P/ (t+ At) + Dy E a0 gy (16)

Fi(t+4t) = 2UpT

and the segments are rotated according to

—Ii(t) + T/ (¢t + 4r)
2kgT

A¢; = Dot At. a7

Here, F;/ and I'/ are the updated forces and torques calculated for the in-
termediate conformatlon specified by 7%/ (¢ + 4r) and ¢/ (¢ + 4r). The orien-
tation vectors f,- and g; are updated at each half step by consecutively
applying two rotation matrices. For instance, for the first half step, the first
rotation matrix corresponds to a rotation about the axis é(t) x &/'(¢ + 4t) by
the angle between &;(¢) and &/ (¢ + 4r), whereas the second corresponds to a
rotation around &;(f) by the angle A¢/.

We implemented the simulation algorithm in a custom C++ code and
ran simulations in parallel on a standard CPU cluster (typically, a 3 s simu-
lation trajectory required 3—4 weeks of CPU time). For Fig. 1, each data
point is obtained from a simulation trajectory of at least 500 ms. We
removed the initial transient period from each trajectory, during which
the average extension (as obtained from a running average over 10° simu-
lation steps) still changed. Once this running average remained within its
standard deviation, we took the long time average over the remaining tra-
jectory. At linking numbers close to the buckling transition, the molecule
jumps forth and back between two relative extensions (on a timescale
longer than 10° simulation steps). In these cases, we simulated until we
observed at least three buckling transitions (in both directions) and aver-
aged over the entire trajectory after the first buckling transition. For all re-
maining figures (which focus on the kinetics of the buckling transition),
we simulated until we had at least three time traces with five full transitions
(in both directions) each. For low forces, we simulated for 500 ms (resulting
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in many transitions), whereas for high forces, we simulated for up to 3 s
(just reaching our required five transitions).

Parameter choice

An overview of all parameters used in the simulations is given in Table |
(for both double-stranded DNA and RNA). The contour length L of the mol-
ecules was chosen to match the minimal length of the molecules for which
experimental data were available. Longer molecules would have been pro-
hibitive in terms of computational cost, in particular with RNA parameters,
for which the buckling transition is considerably slower than with DNA pa-
rameters. The stretching stiffness parameter 6 was not set to match the
experimentally measured stretching modulus but to a value that produced
a stretching modulus 610 times softer than for real molecules (depending
on the segment size used) to allow for larger simulation time steps. This
choice was previously established as a good tradeoff between accuracy
and computational cost for Brownian dynamics simulations of DNA within
the force range that we consider here (30,31,37).

All parameters were chosen such that they describe experiments at room
temperature and intermediate to high salt concentrations, with [Na*] =
320 mM marking a typical experimental condition. For instance, the
bending persistence length was set to the experimentally measured value
at these conditions (14). The experimentally determined torsional persis-
tence length depends on the applied stretching force (33,38). We chose
the torsional persistence length to be consistent with the experiments of
(33) and the simulation results of (18). The value for the effective charge
density » is taken from (29), and the number of point charges per segment,
A, was chosen such that the distance between charges is at most 2 nm. The
radius used for the rotational diffusion coefficient r,, is set to 1 nm, consis-
tent with the radius of the DNA structure. The hydrodynamic radius a is
calculated by demanding that in a straight configuration, the chain of beads
has the same diffusion coefficient as a cylinder with the dimensions of DNA
(30,31). Because the segment length [, strongly impacts the simulation
time, its choice was a compromise between computational efficiency and
accurate representation of the WLC model. By performing simulations
with different segment lengths (Fig. S2), we identified a segment length
of 5 nm as an acceptable compromise, which leads to buckling times that
no longer show a significant dependence on segment length at modest
stretching forces. For all simulations, we chose a time step At short enough
to keep the typical increments in the positions of the beads and angles of the
segments small. In particular, the probability for any rotation angle to
change by more than 7 in an update is negligibly small.

In our model, the main differences between DNA and RNA are in the
bending and torsional persistence lengths. For the effective charge density
of RNA, we used the same value as for DNA. This may be an underestimate
because RNA has a smaller distance between basepairs than DNA (0.28 nm
vs. 0.34 nm). However, we expected the electrostatic interactions to play
only a minor role at the given ionic conditions. To check this expectation,
we ran two sets of test simulations for RNA at 2 pN stretching force with 1)
an effective charge density that was a factor 0.34 nm or 0.28 nm = 1.2
higher than DNA and 2) the electrostatic interaction turned off entirely.
Our simulations with the higher effective charge density resulted in a buck-
ling time of 8.9 + 1.7 ms, which agrees within the statistical error with the
buckling time of 8.6 + 2.5 ms obtained with the effective charge density of
DNA. The result without electrostatic interactions, Ty, = 9.8 * 1.9 ms
(using only hardcore repulsion), also agreed within the statistical error.

Observables

Our boundary conditions (see above) ensure that the ends of the WLC
cannot rotate and also that the chain cannot move around its end points.
Therefore, the excess linking number Lk, defined as the number of turns be-
tween the upper and lower ends of the chain, is an invariant of the dynamics.
At each point in time, the extension z of the WLC is defined by its zy | ;
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coordinate. In the simulation, we track both the extension and the writhe
Wr. We compute the writhe in two independent ways (39): first, by employ-
ing the relation

Wr =Lk —Tw (18)

between writhe, excess linking number, and twist, 7w. The calculation of
twist for helical nucleic acids can be complicated by the fact that one needs
to distinguish between the local basepair property twist and the global twist
of the helix (40). The popular tools for the analysis of all-atom molecular
dynamics simulations (41,42) are not applicable here because our model
has no explicit representation of the bases. Instead, we compute the total
twist as a sum over all twist angles of the discretized WLC (30),

1 N
Tw=—> 6, 19
w ZW; (19)

To ensure that no segments have overlapped, we also calculate the writhe
explicitly every thousandth time step of the simulation, using the method
referred to as “Method 1a” in (39). In the rare cases in which the two calcu-
lated values of the writhe did not agree (typically once in 107 time steps,
depending on Lk and the external force), we restarted the simulation from
the saved configuration at the last successful check. The independent calcu-
lation of the writhe is also a validation of our calculation of the twist.

The equilibrium response is obtained from simulations started at a given
Lk and stretching force F“° and run until they have equilibrated, as judged
by the convergence of the mean extension. To compare the simulation data
to a wide range of experiments with molecules of different contour lengths,
length-independent quantities were introduced. The relative extension is
defined as the extension z divided by the contour length L of the molecule.
The supercoiling density ¢ is defined as the excess linking number Lk
divided by the number of intrinsic turns of the double helix (one turn for
10.5 bp for DNA). The distribution histogram of the extension can be fitted
with a double Gaussian. The weight of the Gaussian describing the post-
buckling state is the probability to be in the postbuckling state ppo
(Fig. 2 A). The dependence of pp., on Lk is fitted to the expression (13)

1

Lkpuck —LK) (2)> AWrpue 2t ?
1+exp(( buck >/§BT) Tbuck L,

Ppost = (20)

where Lkyyck and 4Wry,ox are used as fit parameters. Equation 20 is ob-
tained by expressing the energy of the prebuckling state by the energy
stored in twist and the energy of the postbuckling state by the energy stored
in twist plus the energy stored in the plectoneme. The probability to be in
the postbuckling state then follows from Boltzman statistics, with Lkpyck
defined as the point at which the pre- and postbuckling states are equally
populated (this definition of Lk, eliminates the term for the energy stored
in the plectoneme). The parameter Lk, is referred to as the buckling
point, and it corresponds to the linking number at which the probabilities
for the WLC to be in the prebuckling or the postbuckling state are equal
(Fig. 2 B). The parameter 4Wry,, corresponds to the change in writhe at
the buckling point. The mean of each Gaussian in the extension distribution
describes the mean extension of the DNA strand in the respective state. The
dependence of the mean extensions of the pre- and postbuckling states on
the linking number are fitted with a linear function (shown in Fig. 2 C).
The difference between these extensions evaluated at the buckling point
Lk = Lk is referred to as the jump size Az (Fig. 2 C).

For the analysis of the dynamics of the buckling transition, we obtain the
dwell times in the pre- and postbuckling states from simulation trajectories
in the writhe coordinate. The writhe coordinate is particularly well suited to
separate between the pre- and postbuckling states, as seen from the writhe
histogram (Fig. 2 A). The writhe trajectories are smoothed using a running
average of 10* simulation steps, corresponding to 2 us in real time. The
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FIGURE 2 Simulation of a 650 nm DNA at 2.5 pN stretching force. (A)
Time traces of the extension and writhe at an excess linking number of Lk =
7.0 close to the buckling point are shown. The corresponding extension and
writhe histograms are shown on the right. (B) The probability of DNA to be
in the postbuckling state (green circles) is shown. The light green line
shows a fit with Eq. 20. (C) Mean extensions of DNA in the pre- and post-
buckling states as a function of the excess linking number are shown. The
lines indicate linear fits. The jump size is defined as the difference between
the fit functions evaluated at the buckling point. To see this figure in color,
go online.

minimum between the peaks in the writhe histogram is used as a threshold
to calculate the dwell times, which are distributed exponentially (Fig. 3 A).
Averaging these dwell times gives the average dwell time (Fig. 3 B). The
average dwell times are expected to depend exponentially on Lk according
to (13)

%m:Tm@q(—(hy%a@m—L@AWmM/@T)
21)

and an analogous expression for the postbuckling state. The intersection of
the two exponential functions describing the pre- and postbuckling state
then defines the buckling time Tyucx (Fig. 3 B).

Rescaling of the buckling time

To compare the timescale of the simulated buckling events to the absolute
timescale of the experimental data, we have to account for the presence of
the magnetic particle in the experiment, which is not explicitly included in
the model. Furthermore, we also have to take into account that the contour
length L of the DNA or RNA in the simulation is often shorter (for compu-
tational efficiency) than the molecules used in experiments. Therefore, we
rescaled the simulated buckling times 7;,, proportionally, by the ratio of the
estimated total hydrodynamic drag coefficient of the experimental system
(DNA and magnetic particle) to that of the model system, to obtain the re-
scaled buckling time

YDNAexp T Ymp
Trescaled — Tsim - . (22)
YDNA sim
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FIGURE 3 Dynamics of the buckling transition. (A) Histograms of dwell
times in the pre- and postbuckling states (DNA parameters, linking number
7.0) with superimposed exponential fits (solid lines) are shown. (B) Defini-
tion of the buckling time is shown. Mean dwell times in the prebuckling
(purple circles) and postbuckling (green circles) states are plotted as a func-
tion of the linking number, with the solid lines indicating exponential fits.
The intersection of the lines defines the buckling time 7,,ck. (C) Time traces
of the writhe dynamics at different bending persistence lengths py, are
shown. (D) Buckling time as a function of the bending persistence length
at a fixed stretching force of 3 pN is shown. The data points from simula-
tions (circles) are well described by an exponential fit (solid line). The
shaded gray area marks the range of experimentally measured values for
the bending persistence length of DNA (11,14,33,50,51), and the blue
area marks the corresponding range for RNA (14,51). The simulated buck-
ling time obtained with our RNA parameters is indicated by the blue star.
(E) Buckling time of DNA and RNA for different external forces are shown.
Simulation data (circles) were rescaled for better comparison to experi-
mental data (crosses). The experimental data are taken from (15). The lines
show exponential fits to the experimental (dashed lines) and simulation
(solid lines) data. To see this figure in color, go online.

Here, Ypna exp 1S the (Stokes) drag coefficient of the molecule used in the
experiment, yyp is the drag coefficient of the magnetic particle, and
YbNA.sim 18 the drag coefficient of the simulated WLC. The rescaled buck-
ling times (Eq. 22) are then directly comparable to the experimentally deter-
mined buckling time values. The physical assumption underlying Eq. 22 is
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that of an effective one-dimensional reaction coordinate for the buckling
transition. Given that the z-extension changes during the transition, we as-
sume that essentially the entire system (DNA and magnetic particle) moves
during the transition and thus use the total drag coefficient in Eq. 22.

The drag coefficient for the molecule in the experiment is estimated as
YpNAexp = 27M2/In(z/b), where z is the extension of the molecule and
b = 2 nm its diameter (43). For the estimation of the drag of the magnetic
particle yyp, We take into account that the particle is close to the flow cell
surface, which influences its hydrodynamic drag. We include this effect
within the Faxén approximation (44). Because we neglected hydrodynamic
interactions, we expected that our simulations would display a linear
scaling of the buckling time with the contour length L of the simulated
molecule. To test this expectation, we simulated chains with different con-
tour lengths. For DNA parameters, the simulations show a clear linear
dependence of the buckling time on L (see Fig. S3). For RNA parameters,
the buckling time is much longer, requiring simulations at high computa-
tional cost. We therefore obtained fewer buckling events, resulting in larger
statistical errors in the average buckling time. The associated scaling
behavior in Fig. S3 is not as clear-cut as in the case of DNA parameters
but nevertheless consistent with linear scaling. Hence, we assumed a linear
dependence of the simulated buckling time on the contour length for both
DNA and RNA, which is taken into account in the drag coefficient ypna sim-
For more details and a comparison to experimental results, see the caption
of Fig. S3.

RESULTS AND DISCUSSION

Our central aim is to study the dynamics of the buckling
transition in double-stranded DNA and RNA within the
WLC model. We also want to clarify whether the surpris-
ingly large difference in the experimentally observed buck-
ling dynamics of DNA and RNA can be rationalized just
from the difference in their physical polymer properties,
in particular their torsional and bending rigidities. Toward
this end, we describe both DNA and RNA by a bead-spring
model with harmonic potentials for stretching, bending, and
twisting, i.e., a discretized WLC model; see Fig. 1 A for
illustration and Materials and Methods for details. To
monitor the buckling dynamics, we performed Brownian
dynamics simulations and recorded time traces of the chain
extension and the writhe. In the experiment, as well as in the
simulations, the control parameters are the applied force
(experimentally controlled by the gradient of the magnetic
field) and the linking number (experimentally controlled
by the number of turns of the magnetic particle). The mag-
netic particle in the experiment has two essential effects on
the dynamics of the chain: 1) because of its hydrodynamic
drag, it considerably slows all motion that changes the total
extension of the chain; and 2) because of its size, it confines
the motion of the chain. For computational efficiency, we do
not explicitly simulate the magnetic particle but instead ac-
count for these two effects indirectly via 1) a rescaling of the
simulated buckling time according to Eqgs. 22 and 2) an (up-
per) boundary condition that confines the motion of the
chain. Both boundaries, i.e., the magnetic particle and the
(lower) surface to which the chain is attached, are modeled
as horizontal surfaces with fixed repulsion forces. Impor-
tantly, these repulsion forces prevent release of torsional
strain by loop passage around the endpoints of the chain.
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We also incorporate a sufficiently strong self-repulsion of
the chain, which prevents crossing of chain segments.
Together, the boundary condition and self-repulsion ensure
that the externally controlled linking number remains
conserved.

The ionic conditions of the surrounding solvent enter the
model via the effective charge density of the chain and the
Debye screening length for electrostatic interactions,
whereas the solvent temperature primarily affects the
strength of the stochastic forces (see Materials and
Methods). Given that the system is in the regime of very
low Reynolds numbers, the motion of the chain is over-
damped, and the primary effect of the solvent on the chain
is the hydrodynamic drag. We neglect solvent-mediated
long-range hydrodynamic interactions between the beads,
which typically have only a minor effect on the dynamics
(30,31). All parameters that enter the simulations for DNA
and RNA are summarized in Table 1.

Coarse-grained Brownian dynamics simulations
reproduce equilibrium parameters of the buckling
transition

To validate our model, we first characterized the equilibrium
properties of its buckling transition. We used the parameters
for double-stranded DNA and performed simulations with
different fixed linking numbers, at different constant stretch-
ing forces. At each linking number Lk, we recorded a long
time trace of the extension to obtain the average extension
(z); see Materials and Methods for the simulation procedure.
Fig. 1 B shows the resulting average extension as a function
of the linking number (connected dots) for three different
stretching forces (1, 2, and 3 pN). Note that in this graph,
both the extension and the linking number are rescaled to
length-independent quantities (see below). The extension
initially stays approximately constant with increasing link-
ing number. However, at a critical linking number, the
curves display a distinct and rapid decrease in the average
extension. At this point, the simulated DNA undergoes a
buckling transition from a linear conformation to a plectone-
mic conformation (inset of Fig. 1 B). When the stretching
force is increased, the buckling transition becomes sharper.
Concomitantly, the associated critical linking number Lkyycx
becomes larger; see the arrows in Fig. | B, which mark the
buckling transition for each stretching force (see below for
the precise definition of the critical linking number). In
the postbuckling regime, further increase of the linking
number causes a linear decrease in extension as the remain-
ing stretched DNA is gradually converted into plectonemic
DNA.

Fig. 1 B also shows several experimental data sets (14,33)
for stretching forces of 1, 2, and 3 pN (triangles and crosses;
see caption for the experimental conditions). In these exper-
iments, the linking number is slowly increased by rotating
the magnetic field. The measured extension, recorded by



optical tracking of the magnetic particle, then corresponds
to a quasiequilibrium value. Because the experiments were
run with DNA molecules of different contour lengths, we re-
scaled the excess linking number Lk to the supercoiling den-
sity g, an intensive variable (see Materials and Methods).
Likewise, we rescaled the extension to relative extension.
Furthermore, to take into account the experimental uncer-
tainty in the absolute z-position, we allowed the extension
axis of the experimental data to be shifted by up to
150 nm for each data set. The simulated data are in good
agreement with the experimental data (Fig. | B), suggesting
that the WLC model can quantitatively account for the
(quasi)equilibrium response of DNA under torsional strain,
including the buckling transition, consistent with previous
theoretical studies (18,45).

To study the buckling transition displayed by our simu-
lated DNA in more detail, we focused on the linking number
regime in which the transition occurs. We analyzed long
time traces of the extension as well as the writhe Wr defined
in Eq. 18. In the transition regime, the DNA hops back and
forth between the prebuckling state (linear conformation)
and the postbuckling state (plectonemic conformation), as
seen in the time traces of Fig. 2 A (left). From these time
traces, we obtain the associated histograms of the extension
z and the writhe Wr (see Fig. 2 A, right). The extension his-
togram displays a distinct two-state behavior, with two
peaks corresponding to the pre- and postbuckling states.
This distribution is well described by a double-Gaussian
fit (colored lines in Fig. 2 A, right). The double-Gaussian
fit to the extension distribution can be used to define Lk,
the critical linking number that marks the buckling point, in
the same way as for experimental data (13,15): for each
linking number Lk, the weights of the Gaussian peaks yield
the probabilities to be in the pre- and postbuckling states,
and the buckling point is reached when these probabilities
are equal. Fig. 2 B shows the probability pp.g to be in the
postbuckling state as a function of the excess linking num-
ber Lk over the range of the transition. In this figure, the
buckling point Lk, corresponds to the excess linking
number at which pp = 0.5, as indicated by the lines.

The double-Gaussian fit also yields the mean extensions
associated with the pre- and postbuckling states (see Fig. 2
C). The “jump size” Az of the buckling transition is then
defined as the difference between the mean extension of
the prebuckling state and the mean extension of the post-
buckling state, evaluated at the buckling point, as indicated
in Fig. 2 C. All of these observables constitute equilibrium
properties of the buckling transition and can be measured
experimentally. Fig. S1 shows a direct comparison of the
simulation results to the corresponding experimental values
for a number of different equilibrium properties as a func-
tion of the stretching force: the buckling point Lky,ck, the
widths of the two peaks in the extension distribution, the
jump size 4z, and also an estimate of the change in writhe
AWrpyuck at the buckling transition. Because writhe cannot
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be measured directly in the experiment, the latter is based
on an energetic model of the buckling transition (13) that
predicts the functional dependence of ppo on the linking
number, with a parametric dependence on 4Wryyck, Lkpucks
the torsional persistence length p,, the contour length L, and
the temperature 7; see Eq. 20 in Materials and Methods and
(13) for details. The model captures the experimentally
observed equilibrium behavior quantitatively (Fig. S1).
Taken together with the agreement observed above in
Fig. 1 B, this strongly suggests that our Brownian dynamics
simulations of the discretized WLC model yield a valid
description of the static properties of the buckling
transition.

Buckling dynamics is highly sensitive to bending
rigidity but not to torsional rigidity

Next, we used the Brownian dynamics approach to analyze
the dynamics of the buckling transition in the discretized
WLC model. Given that within our model, the only essen-
tial differences between double-stranded RNA and DNA
are in the magnitudes of the bending persistence length
P and the torsional persistence length p,, we were espe-
cially interested in the dependence on these parameters.
To obtain the kinetic rate constants associated with the
buckling transition, we analyzed long simulation trajec-
tories with a two-state model, assigning each point on a tra-
jectory to be in either the prebuckling state or the
postbuckling state. Because the writhe histogram displays
a very pronounced minimum, we performed the state
assignment by setting a threshold for the value of the writhe
coordinate at this minimum. From these data, we con-
structed histograms of dwell times in the pre- and post-
buckling states (see Fig. 3 A). These histograms take on a
simple exponential form, consistent with experiments
(13,15). We therefore used a single-exponential fit to these
histograms to extract the decay rates k and the associated
average dwell times 7 = 1/k.

The dwell time in the prebuckling state decreases expo-
nentially with the linking number, whereas the dwell time
in the postbuckling state increases exponentially with the
linking number (Fig. 3 B). This is in agreement with exper-
imental observations (13,15) and with Eq. 21. At a certain
critical linking number, the dwell times of the pre- and post-
buckling states are equal. This occurs precisely at the link-
ing number Lk, that corresponds to the buckling point
(Figs. 2 B and 3 B), confirming that the static and dynamic
definitions of the transition point are consistent. The buck-
ling time, Tyyuck, 1S then defined as the single dwell time at
this unique point (Fig. 3 B).

For a given set of parameters, the buckling time Ty iS
the characteristic timescale associated with the buckling dy-
namics. To characterize the parameter dependence of the
buckling dynamics, we varied the bending persistence
length p,, and the torsional persistence length p,. We found
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a strong dependence of T, on the bending persistence
length py,, which is well described by an exponential fit
(Fig. 3, C and D). In contrast, we found only a weak depen-
dence of Tuux On p;, with the buckling time decreasing
slightly as the torsional persistence length is increased
(Fig. S5).

To rationalize the observed sensitivity of the buckling dy-
namics on the bending persistence, we considered a kinetic
model based on a soliton-like transition state (19) (see Sup-
porting Materials and Methods for details). This model pre-
dicts that the energy barrier for buckling increases with the
bending persistence length, consistent with the intuitive
expectation that the higher the bending stiffness, the more
energy is needed to form loops or solitons. On a quantitative
level, the kinetic model captures the observed dependences
of the buckling time on all parameters relatively well,
although it overestimates the effect of all polymer properties
on the buckling time (Fig. S4).

Polymer properties account for a large fraction of
the experimentally observed difference between
DNA and RNA buckling dynamics

Because the polymer properties have a significant effect on
the buckling dynamics, we asked whether this dependence
alone might be able to account for the different buckling
times observed experimentally for DNA and RNA (15).
To quantitatively compare simulations with experimentally
determined buckling times, simulations were run with
DNA and RNA parameters (Table 1) at different external
forces. To be able to compare the simulated buckling times
to the experimental data, the simulation data were rescaled
according to Eq. 22 to account for the hydrodynamic drag
of the magnetic particle and the difference in contour
lengths between simulation and experiment. Fig. 3 E shows
the resulting comparison, with the experimental and simu-
lated buckling times T, plotted as a function of the
stretching force F for both DNA and RNA. The qualitative
trend that the buckling dynamics of RNA is much slower
than for DNA is displayed by both the experimental and
the simulation data.

For a more quantitative comparison, we focused on fea-
tures that do not depend on our rescaling procedure, which
necessarily produces some level of uncertainty in the abso-
lute timescale of the buckling times (see Materials and
Methods). Because the buckling times increase roughly
exponentially with the stretching force, we fitted exponen-
tial functions of the form

FAx
Thuck = ToeXp (k—T> (23)
B

to both the experimental and the simulated data, with 79 and
Ax as fit parameters (Fig. 3 E). For the case of DNA, the
parameter Ax, which characterizes the force dependence
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of the buckling times, is higher for the simulated data
(4dx = 5.0 = 0.5 nm) than for the experimental data
(4x = 2.1 = 0.4 nm). In contrast, for the case of RNA,
the simulations lead to a value of 4x = 6.6 = 1.5 nm, which
is consistent with the experimental value of 4x = 5.5 =+
1.1 nm. Here, to estimate the error of Ax, we split the
time traces into five (DNA at 2, 2.5, and 3 pN, RNA at 2
pN) or three (remaining cases) sections and calculated the
standard deviation of the buckling times obtained from these
sections. The discrepancy between the Ax-values for DNA
between experiment and model is in part due to the discre-
tization of the WLC model: at higher stretching forces, the
more bendable DNA structures yield plectonemes with very
small end loops, which are not well resolved when the
segment length is not much smaller than the end-loop
size. We tested this effect by calculating Ax for different
segment lengths and found that 4x indeed increases with
increasing segment size (Fig. S2). However, our discretiza-
tion is sufficient to make discretization effects negligible for
DNA at forces of 2.5 pN or smaller (Fig. S2). For RNA dis-
cretization, the effects are smaller because of the larger
bending persistence length.

Another scaling-independent quantity is the ratio of the
buckling times for RNA and DNA, which we denote by
r = TrRna/TDNA- At 2 pN stretching force, the experimental
value is r = 40, whereas the value obtained from our simu-
lations is » = 7. On the logarithmic scale, the discretized
WLC model thus accounts for more than half of the exper-
imental effect (Fig. 3 E). Because the buckling time is
strongly affected by small changes in the bending persis-
tence lengths, the precise values used for DNA and RNA
matter for the model prediction of the r-value. A better
agreement with the experimental value of r = 40 could be
reached if the bending persistence lengths for RNA and
DNA are allowed to be varied within the range of experi-
mentally measured values (Fig. 3 D). Nevertheless, the
WLC cannot fully rationalize the observed difference be-
tween DNA and RNA, suggesting a possible role for other
effects (see Conclusions).

Conformations along the buckling transition

Our simulations enable us to probe the detailed conforma-
tions of the chain that are associated with the buckling tran-
sition and that are not directly observable experimentally.
Toward this end, we ran simulations with DNA parameters
at stretching forces of 1-3 pN (with the linking number
adjusted to the buckling point), again tracking writhe and
extension but also saving the entire conformation of the
chain every 1000 time steps. For all forces, the writhe coor-
dinate separates the states more clearly than the extension,
as seen from the writhe and extension histograms in Fig. 4
(for F =1 pN and F = 3 pN) and Fig. S7 (for F = 2 pN).
To leverage the full information contained in the writhe
and extension data, we determined the joint distribution in



the two-dimensional space of writhe and extension (Figs. 4,
C and G and S7).

At the highest stretching force (3 pN), the system displays
two clear and well-separated peaks in the writhe-extension
distribution (Fig. 4 C), consistent with the effective two-
state behavior observed in previous studies, e.g., in (13—
15). The peak associated with the postbuckling state is
considerably broader than the peak associated with the pre-
buckling state, in line with experimental observations (15).
Fig. 4 D displays three representative conformations of the
WLC at the marked points in the writhe-extension histo-
gram. The conformation associated with the prebuckling
state is identified as essentially straight, whereas the confor-
mation from the postbuckling state has a clear plectonemic
form (13,26). The conformation from the transition state has
a solenoidal shape resembling the previously described form
referred to as “soliton” (19,25,26). Fig. S6 shows three
different conformations of the transition state, which all
take on a similar shape.

At the lowest force (1 pN), the peaks in the writhe-exten-
sion distribution are significantly broader (Fig. 4 G),
consistent with the broadening at low forces observed
experimentally (15). Closer inspection suggests that an
additional intermediate state exists in this force regime,
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which is also faintly discernible already at 2 pN stretching
force (Fig. S7). Fig. 4 H shows four representative confor-
mations of the WLC at the marked points in the writhe-
extension histogram. In between the soliton transition state
and the plectoneme state, there is now an intermediate state
with a conformation that features only one loop and resem-
bles the “curl” state that was previously described; see
(17,26) and references therein. This intermediate state
can also be observed in the writhe histogram (Fig. 4 E),
but not in the extension histogram (Fig. 4 F). We used a
Gaussian mixture model to extract estimates for the popu-
lation of the curl and plectoneme states from the writhe his-
tograms for different linking numbers and stretching
forces. This analysis shows that for the simulation with 1
pN stretching force (at the corresponding buckling point
of Lk = 4.7), the curl state is more populated (at 38.6%)
than the plectonemic state (at 29.2%). Fig. S8 plots the
fractional populations of the curl and plectoneme states
as a function of linking number for different stretching
forces. For the higher forces, the curl state is barely popu-
lated, and the WLC only passes through the curl state to
form a plectoneme. Overall, the Gaussian mixture model
indicates that the curl state becomes more populated rela-
tive to the plectonemic state at low forces and linking
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FIGURE 4 Configurations adopted during the buckling transition. (A—D) Simulations at the buckling point with a stretching force of F = 3 pN and DNA
parameters are shown. The writhe distribution (A) and the extension distribution (B) are projections of the joint distribution (C) in the two-dimensional
writhe-extension space. (D) Snapshots of representative configurations in the pre- and postbuckling states and the transition state, with the associated writhe
and extension coordinates marked by crosses in (C), are given. (E-H) The same is given for a stretching force of F' =1 pN. At this lower force, an additional
intermediate state appears that displays a “curl” conformation. To see this figure in color, go online.
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numbers below the buckling point. This is in agreement
with theoretical predictions, according to which the in-
crease in the population of the curl state at lower forces
is due to a reduced energy cost for loop formation
(13,17). By introducing mismatches in the DNA, which re-
duces the looping energy, signatures of such a curl state
have even been observed experimentally (26).

CONCLUSIONS

We took a Brownian dynamics approach based on a discre-
tized WLC chain model to study the dynamics of the buck-
ling transition in double-stranded RNA and DNA. We first
established that known equilibrium properties of the buck-
ling transition are quantitatively reproduced from long
simulation trajectories. We then analyzed the kinetics of
the transition between the straight and the plectonemic
conformation, finding semiquantitative agreement with
experimental data. In particular, our simulations have shown
that the WLC model can partially account for the large dif-
ference in the experimentally observed buckling times for
DNA and RNA. The difference in the simulated buckling
times can mainly be attributed to the difference in bending
persistence length between DNA and RNA, as our simula-
tions show a strong dependence of the buckling time on
the bending persistence length.

In total, the WLC model can account for roughly a seven-
fold difference between the buckling times of DNA and
RNA using the parameters listed in Table 1. This leaves a
factor of about six in the fold change between DNA and
RNA buckling times unexplained. Because there is some
uncertainty in the experimentally determined persistence
lengths of DNA and RNA, this remaining factor could be
partially explained by the WLC model, if our parameter
sets underestimate the difference in the bending persistence
lengths of DNA and RNA. However, even if this is the case,
a discrepancy of at least two- to threefold likely remains.
This discrepancy could be due to a number of factors not
included in the discretized WLC model, such as anisotropic
bending and twist-bend coupling (46,47), anharmonic and
nonuniform (sequence-dependent) elastic properties (21),
and local melting of the double-helical structure (48,49).
Additionally, our simplified treatment of the electrostatic in-
teractions and our neglect of hydrodynamic interactions
may contribute to this discrepancy. A detailed investigation
of these factors will require a precise determination of the
parameters involved and is beyond the scope of this work.

A benefit of the simulation approach is that it permits
monitoring the full conformational dynamics of the mole-
cules during the buckling transition, in contrast to experi-
ments, in which typically only the extension is monitored
directly. (Although recent approaches for direct torque and
twist measurements are available (11,38), their temporal
resolution in the torque or twist coordinate is typically
much lower than in the extension degree of freedom.) We
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kept track of the writhe observable in all simulations and
found that this observable separates well between the
conformational states of the WLC. This became apparent
in particular when we sampled conformations of the WLC
during the buckling transition at different points in the
two-dimensional writhe-extension space (Fig. 4). This
analysis showed that at forces higher than ~2 pN, the
coarse-grained dynamics of the buckling transition can be
represented as a transition from the straight conformation
in the prebuckling state via a “soliton” transition state to
the plectonemic conformation of the postbuckling state.
At lower forces (~1 pN), an intermediate “curl” state ap-
pears, consistent with prior theoretical predictions and
experimental indications (see (17,26) and references
therein). Taken together, our study consolidates the WLC
model as a model that describes not only the static proper-
ties but also the dynamics of the torsionally induced buck-
ling of both double-stranded DNA and RNA on a
semiquantitative level.
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Figure S1: Equilibrium properties of the buckling transition at different forces. Simulation data is shown by grey circles.
Experimental data from Ref. (1) are shown by crosses, and data taken from Ref. (2) as triangles. The experimental data from
Ref. (1) are obtained using a DNA strand with the same length as the DNA in our simulation, i.e. 1.9 kbp (650 nm). For the
experiments in Ref. (2) a longer DNA strand was used (7.9 kbp). In order to compare the simulation data to experiments with
molecules of different contour lengths, we rescaled the parameters describing the buckling transition to length independent
quantities wherever possible. (A) Position of the buckling point. (B) Width of the Gaussians describing the extension distribution,

rescaled by the contour length. (C) Jump in writhe at the buckling transition, rescaled with the contour length based on the
scaling behavior derived in reference (1). (D) The jump size in the extension.
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Figure S2: Comparison of buckling times calculated with different segment lengths. For low forces (~2 pN), the buckling times
agree, whereas for higher forces significant deviations arise when the segment length is increased beyond the 5 nm segment
length used in the main text. This effect is due to the fact that at higher forces, structural features of the plectoneme such as the
endloop get smaller and cannot be represented with larger segments. For RNA this effect is expected to be smaller as the higher
bending persistence length causes the endloop to be larger. We conclude that our simulation data for 2 and 2.5 pN is not affected
by discretization effects, whereas we cannot exclude a remaining discretization effect even with our 5 nm segment length when
the force is 3 pN or larger.
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Figure S3: Dependence of the buckling time on contour length. Simulated buckling time rescaled with the contour length for
DNA (grey) and RNA (blue) as a function of contour length at an external force of 2 pN. The rescaled buckling times where fit
with a constant. The resulting data for DNA shows a clear linear dependence of the buckling time on the contour length. This
is consistent with theoretical expectation, since since the total drag of the chain increases linearly with the contour length in
the simulation, and, on average, a constant fraction of the chain has to move in order to create a plectoneme. Experiments
with molecules of different contour lengths find a stronger dependence on the contour length than expected. For example, for
1.9 kbp and 7.9 kbp DNA the measured buckling times of 35 ms and 55 ms, respectively (1, 2), correspond to an increase in the
buckling time by a factor of 1.57, whereas only a marginal increase by a factor 1.16 is expected after taken into account the drag
coefficient of the magnetic particle (these experimental values were measured at 3 pN stretching force). However, experimental
data on the dynamics of the buckling transition with different molecule lengths is still scarce (in particular for RNA), and more
data will be necessary to clearly determine the experimental scaling behavior.



>
O

—~ ~~2 L w | O Simulation
(é’ 2 i vy Y 1 glo ' O
= e —10t F Y O i V Theory Eq. 7
Slfroe ()] 00~ x w O
§ . Q ' l~§100 - 5 o i Theory Eq. 8
500 600 700 40 60
Contour length (nm) pp (NM)
B 1 Ll D 1 T T
”g v fglO 3 E
—10' )4 1 =
3 soo §100-8090-
=100 +0 1 ¥ ’
2 4 75 100
Force F (pN) pe (nm)

Figure S4: Comparison of analytical estimate for the buckling time with simulation. If not indicated otherwise, the following
parameters are used: Contour length L = 650 nm, bending persistence length p, = 45nm and torsional persistence length
pt = 90nm. The simulated buckling times are shown as circles. The theoretical values are calculated based on Eq. 7 (dark grey
triangles) and Eq. 8 (light grey triangles). (A) Buckling time versus contour length at 2 pN external force. (B) Buckling time for
different external forces. (C) Buckling time for different bending persistence lengths at 3 pN. (D) Buckling time for different
torsional persistence lengths at 2 pN.
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Figure S5: Dependence of buckling time on torsional persistence length. The simulation data is obtained at 2 pN external
force. (A) Time traces for different torsional persistence lengths using a vertical offset of 4 for better visibility. (B) Buckling
time versus torsional persistence length. The data was fit with an exponential function. The buckling time only shows a weak
dependence on the torsional persistence length.
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Figure S6: DNA conformations close to the transition state. Simulation data obtained at 3 pN external force. The transition
state is found by searching for configurations where the linking number and the extension are within a given range and that
a transition is indeed happening (which is checked by looking at the time trace of the writhe). The configurations show a
solenoidal form (marked by the red rectangle), which is similar to the soliton transition state described in Refs. (3-5).
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Figure S7: Extension and writhe distributions at 2 pN external force. The simulation data was obtained with DNA parameters.
A small shoulder in the writhe distribution and the 2D distribution appears. This shows that the "curl" state is more populated

than at 3 pN and less populated than at 1 pN.
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Figure S8: Occurrence of curls and plectonemes for different external forces and linking numbers. The probability to be in the
curl state (n) (cirlces) and the probability to be in the plectoneme state (m) (triangles) were calculated for different linking
numbers and forces (2 pN (blue), 2.5 pN (green), 3 pN (orange) and 3.5 pN (black)). The probabilities were obtained by fitting
a Gaussian mixture model to the writhe distribution. For lower linking numbers and forces the probability of having curls
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increases. The resulting data are in qualitative agreement with theoretical predictions of Ref. (6).



SUPPLEMENTARY TEXT

Derivation of the twist formula
To compute the twist angle between two subsequent chain segments we define p; = €;_ X é;. The twist angle is commonly
defined as 1; = a; + y;, with @; being the angle between fi_l and p; and y; being the angle between ﬁ and p;. We define an
Euler transformation to transform between the coordinate systems X; = ( f; ,8i,e¢;)and ;1 = ( ﬁ,l ,8i-1, €i—1) by the rotation
matrix T(a;, Bi, vi), where B; is the angle between ¢;_; and é;. For simplicity we omit the index i in the following derivation.
Using the ZY Z convention the rotation matrix is given by

cosacosfcosy —sinasiny —cosacosfsiny —cosysina cosasinf
T(a,B,y) =|sina@cosScosy +cosasiny —sinacosfBsiny+cosacosy sinasinf

—sin S cosy siny sin 8 cos

We transform between the coordinate systems:

% =ZiT(a, B,y)
2L Z =2 T (@, B,y)
fir fiaa gi-fi-1 € - fim
JE 8-l 8i-8i-1 € -8i1|=T(a,B,y)
fi-€io1 &i-€ii1 € -eéiy

where we have used that Z;_; is an orthogonal matrix (X", = X7 _ll). Comparing the matrix entries we obtain

-

i

fi ~fl~_1 = cos @ cos Bcosy — sina siny
- gi_1 = —sina cos Bsiny + cos @ cosy
- gi_1 = sina cos B cosy + cosa siny
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= cos(a + y)(1 + cos B)

-
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Model for the buckling time

g1 ~ cos(a +7)

= tan(a + )

To interpret the simulated buckling times, we need an expression for the energy barrier of the buckling transition. In our
simulation we observed that the transition state has a ’soliton like’ form (see Figure S6), similar to analytical predictions
by (3, 4). Therefore we base our analysis on the expression for the energy barrier given by (3), which was found using an
inextensible wormlike chain model. The energy barrier is defined by the local energy minimum corresponding to a straight
chain with the twist given by the linking number and a ’soliton-like’ transition state. Ref. (3) defines the following length scales,

a = \/pkaT/F

b= 2pkaT/F
| = (072 _ b72)—1/2

where I is the torque. The linking number at the buckling transition is given by

I'L
Lk =—4W
buck 2npksT Tbuck

ey
@
3

“



where the writhe at the buckling transition is given by

2 b L
Wrouek = p arctan (7 tanh (5)) . (5)

The linking number Lkyyck cannot be calculated directly from this theory and therefore we use the observed linking number in
the simulation to calculate the torque I'. The energy barrier is then given by

_ 8pvksT

AEy ;

npiksT
L

L
tanh (Z) —27W rpuck (F + Wrbuck) . (6)

To get from the energy barrier to the buckling time, we use Kramer’s transition state theory in one dimension, which leads to a
buckling time of the form
AEy,

Touck = Cy exp (kBT) . @)
For the drag coefficient y we use the expression given in the main text. C is the curvature parameter in Kramer’s theory
defined via the curvature at the energy minimum and the curvature at the transitions state, but the value cannot be directly
and simply extracted from the theory. In practice C is dependent on the different parameters (like external force, bending
persistence length and others) but as a simple approximation we first leave it as a constant fit parameter (Figure S4 dark grey
triangles). To additionally account for the change in C we reconstruct the energy landscape from the extension histogram via
AG(z) = —kgT In P(z). Using this energy landscape we can approximate the curvature C,. This curvature does not correspond
directly to the curvature in Eq. 7 and therefore we introduce it as a factor C, /Cpna Where Cpna is the curvature parameter of
the DNA energy landscape at 2 pN external force. This allows us to use the same parameter C with and without correction
factor. The buckling time is then calculated including this factor:

C; AEy
Touck = C Cona Y eXp ( kBT) 3
It is important to note that any entropic contributions were neglected in this calculation.

The calculated buckling times agree well with our simulated buckling times (Figure S4) and reproduce all the trends
observed in the simulation. That is an increase in the buckling time with the force (Fig. S4) B), an increase of the buckling time
with the bending persistence length (Fig. S4 C) and a decrease in the buckling time with increasing torsional persistence length
(Fig. S4 D). Including the correction due to the change in curvature for these parameters improves the agreement.
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