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S1 Motor-driven rotation of a magnetic bead in a magnetic 
potential 
The equation of motion for a magnetic bead spun around by a rotary motor in an 
external magnetic field in the overdamped limit, relevant in our case, is given by: 
 0 = 𝜏!"#$%& + 𝜏!"#"$ + 𝜏!"#$ + 𝜏!!!"#$% , Equation S1 
where 𝜏!"#$%& is the torque due to the interaction between the magnetic field of the 
magnets and the dipole of the bead; 𝜏!"#"$  is the motor torque and quantity of 
interest; 𝜏!"#$ = −𝛾!"#$𝜔!"#$  is the drag torque on the bead, where 𝛾!"#$  is the 
rotational drag coefficient in bulk, and 𝜔!"#$ is the angular speed; and 𝜏!!!"#$% =
2𝑘!𝑇𝛾!"#$𝜂 𝑡  is the torque due to thermal fluctuations on the bead, where 𝜂 𝑡  is 

a white-noise process with properties [1]: 
 𝜂 𝑡 = 0;    𝜂 𝑡 𝜂 𝑡! = 𝛿 𝑡 − 𝑡! , Equation S2 
where 𝛿 is Dirac’s delta function. We perform numerical simulations and analytical 
calculations of the simple model in Equation S1 for a quantitative description of our 
assay. In the modelling, we assume for simplicity that the motor torque is independent 
of its rotational speed. This assumption is motivated by the fact that the motor torque 
is reported to be roughly constant in the plateau of its torque-speed curve (in E.coli, 
the motor torque decreases by ≈ 10% between 0 and 175 Hz [2]). A change in motor 
torque (e.g. due to stator exchange or other external factors) would appear as a jump 
between curves simulated at different (constant) motor torques, and can be accounted 
for by these jumps. 
 

S2 Analytical approximation for the magnetic torque 
As the motor torque is the quantity of interest, the only term in Equation S1 not 
discussed yet is the magnetic torque. A previous report [3] has shown that the 
magnetic potential for a MyOne bead in magnetic tweezers is π periodic. An obvious 
and simple choice is then to assume 𝑉 𝑥 ∝ − cos 2𝑥 , where 𝑥 = 𝜃 − 𝜃!, because 
𝑉 𝑥  is π periodic and has a minimum at 𝑥 = 0 . The analytical calculations 
(Supplement S3 and S4) approximate the magnetic torque accordingly as: 
 𝜏!"#$%& = −𝜏! sin 2 𝜃 − 𝜃! , Equation S3 
where 𝜏!  is the maximum magnetic torque, 𝜃  is the angular orientation of the 
anisotropy axis inside the magnetic bead, and 𝜃! is the orientation of the external 
magnetic field. In such a potential, the trap stiffness near the bead’s equilibrium 
position 𝜃!  is 𝜅!"#$ = −𝜕𝜏!"#$%& 𝜕𝜃 = 2𝜏! , from which it follows that the 
maximum magnet torque is 𝜏! = 𝜅!"#$ 2. From previous reports [3], we know that 
near the bead’s equilibrium position, 𝜅!"#$ = 𝑁𝑉  𝐶  𝐵  𝑀 𝐶 + 𝐵  𝑀 , where 𝑁𝑉 is 
the effective volume of superparamagnetic nanoparticles inside the bead, 𝐵 is the 
magnetic field, and 𝑀 𝐵  is the magnetization, which depends on the field 𝐵. We 
make three remarks about this sine approximation for the magnetic torque: first, the 
potential for aligned (an approximation itself) superparamagnetic nanoparticles looks 
more like a skewed sine and approaches an actual sine function only in the low and 
high field limits; second, although the magnetic torque averaged over one revolution 
is zero ( 𝐴 sin 2𝑥 𝑑𝑥!!

! = 0 with 𝐴 = −𝜏! and 𝑥 = 𝜃 − 𝜃!), the relevant parameter 
here is the time-averaged magnetic torque over one revolution 



( 𝐴 sin 2𝑥 𝑡 𝑑𝑡! !!!!
! !!! ), which is nonzero for nonzero fields; third, the magnetic 

torque reduces the time-averaged motor speed, but the instantaneous motor speed at 
certain bead orientations actually increases compared to the drag-limited speed 
(Supplement S9), because at those orientations the motor torque and magnetic torque 
work in the same direction. In addition to this sinusoidal approximation, the analytical 
calculations assume deterministic behaviour, i.e., 𝜏!!!"#$% = 0. This deterministic 
approximation (Supplement S3) converges to the stochastic solution (Supplement 
S4) in the low and high field limits. The effect of noise is most apparent near the 
critical point, stall, where motor torque and magnetic torque are similar in magnitude. 
 

S3 Average speed in the deterministic approximation 
In the deterministic approximation, the effect of thermal fluctuations is ignored, i.e., 
𝜏!!!"#$% = 0. The noise-free equation of motion for a magnetic bead spun around by 
a rotary motor in an external magnetic field in the overdamped limit is given by: 
 −𝜏!"#$ = 𝜏!"#$%& + 𝜏!"#"$ , Equation S4 
where each of the terms is as indicated in the main text. We substitute the appropriate 
parameters: 
 𝛾!"#$𝜔!"#$ = −𝜏! sin 2 𝜃 − 𝜃! + 𝜏!"#"$ , Equation S5 
where 𝜔!"#$ = 𝜃. When the orientation of the external magnetic field is fixed, as in 
our current experiments, !!" !!!! = 𝜔!"#$, and we rewrite the noise-free equation of 
motion as: 
 𝑥 = −𝐶! sin 2𝑥 + 𝐶!. Equation S6 
where 𝑥 = 𝜃 − 𝜃!, 𝐶! = 𝜏! 𝛾!"#$, and 𝐶! = 𝜏!"#"$ 𝛾!"#$. 
For C! > C!, the torque signal is a periodic function with period [4]: 
 𝑇 =

𝜋

𝐶!! − 𝐶!!
. Equation S7 

The speed of rotation in Hertz is then given by: 
 

𝑓!"# =
1
2𝑇 =

𝐶!! − 𝐶!!

2𝜋 , Equation S8 

and the corresponding angular speed in rad/s is: 
 

𝑥 = 2𝜋𝑓!"# = 𝐶!! − 𝐶!!. Equation S9 

When the magnetic torque is negligible, i.e, C! ≪ C!, the angular speed is simply 
𝑥 = 𝐶!! = 𝜏!"#"$ 𝛾!"#$. As the magnetic torque increases, the motor brakes, and 
once the magnetic torque is equal in magnitude to the motor torque, C! = C!, the 
motor stalls, so 𝑥 = 𝐶!! − 𝐶!! = 0. This expression for the angular speed (Equation 
S9) provides a convenient analytical approximation for the speed-versus-field curve, 
because 𝑥 𝐶! 𝜏! 𝐵 . 
 
For fitting the average speed versus magnetic field, we employ Equation S9, where 
𝐶! = 𝜏!"#"$ 𝛾!"#$  and 𝐶! = 𝜏! 𝛾!"#$  with 𝜏! = 𝜅!"#$ 2 , 
𝜅!"#$ = 𝑁𝑉  𝐶  𝐵  𝑀 𝐶 + 𝐵  𝑀 , and 𝑀 𝐵 = 𝑀!"# coth !

!!
− !!

!
. We calculate 

𝛾!"#$, and set 𝑀!"# = 43.3 kA/m and 𝐵! = 12 mT  [5]; the fitting parameters are 𝑁𝑉, 
𝐶, and 𝜏!"#"$. 



 

S4 Average speed in the stochastic description 
We have an analytical expression for the deterministic approximation (Equation S9), 
but we would also like to understand the effect of thermal fluctuations. We consider 
the equation of motion (Equation S6), which describes a tilted periodic potential. The 
periodic potential is: 
 𝑉 𝑥 = −!

!
  𝜏! cos 2𝑥 , Equation S10 

where 𝑥 = 𝜃 − 𝜃!. An external force 𝐹 tilts this periodic potential; in our system the 
tilting force 𝐹 is the motor torque. The tilted periodic potential 𝑈 𝑥  is: 
 𝑈 𝑥 = 𝑉 𝑥 − 𝐹𝑥 = −!

!
  𝜏! cos 2𝑥 − 𝜏!"#"$𝑥. Equation S11 

Without the assumption of a noise-free system as in Supplement S3, Stratonovich 
showed that the time-averaged speed is described by [6]: 
 

𝑥 =
𝐷! 1− exp − 𝐹𝑙

𝑘!𝑇
𝑙   𝐼±

, Equation S12 

where 𝐷! = 𝑘!𝑇 𝛾!"#$, 𝑙 = 𝜋, and we arbitrarily choose to use 𝐼! , which is given 
by [6]: 
 

𝐼! =
1
𝜋

1
𝜋 exp −

𝑈 𝑥 − 𝑈 𝑥 + 𝑦
𝑘!𝑇

𝑑𝑦
!

!

𝑑𝑥
!

!

. Equation S13 

 
To understand the effect of thermal fluctuations, we compare the deterministic 
solution (Equation S9) to the stochastic solution (Equation S12) at different 
temperatures, where we perform the integration in Equation S13 numerically 
(Figure S1). All curves overlap in the low and high field limits, as they should. For 
decreasing temperatures, the curves move towards the analytical solution of Equation 
S9, as the thermal fluctuations reduce to the curve where they are not considered 
(Equation S9). The stochastic approximation (Equation S12) includes thermal 
effects, however, it is less convenient to use than the deterministic approximation 
(Equation S9) because of the integral 𝐼±  (Equation S13). Both the deterministic 
and stochastic approximations still assume a sinusoidal description of the magnetic 
potential (Equation S10), which might be incorrect. Therefore we also perform 
numerical simulations (Supplement S5). 
 



 
Figure S1 Three stochastic and one deterministic solution for the average motor speed at different 
magnet distances to the sample (vertical magnet configuration with 2 mm gap size between magnets). 
The data points display the results of the stochastic solution (Equation S12) at the designated 
temperatures: 4, 300, and 1200 K. The red line is the result of the deterministic solution (Equation 
S9). The inset is a zoom-in near 𝐶! = 𝐶!, where the stochastic solutions deviate most from the 
deterministic solution. 
 

S5 Numerical simulation of angular traces 
We numerically simulate angular traces of a magnetic bead spun around by a rotary 
motor in an external magnetic field. We repeat the simulations at different magnetic 
field strengths, and extract the average speed, the mean angle, and the standard 
deviation in the angle. Starting with the equation of motion, filling in all terms, and 
rewriting, we obtain: 
 𝜃 𝑡 + Δ𝑡 = 𝜃 𝑡 +

𝜏!"#$%& + 𝜏!"#"$ + 𝜏!!!"#$%
𝛾!"#$

Δ𝑡, Equation S14 

where 𝜏!"#$%& is the magnetic torque, explained below, 𝜏!"#"$ is the motor torque, 
and 𝜏!!!"#$% = 𝑟! 2𝑘!𝑇𝛾!"#$ Δ𝑡 , where 𝑟!  is a random number drawn from a 
normal distribution with zero mean and unit standard deviation. 
 
The magnetic torque 𝜏!"#$%& is calculated as described previously [3]. Summarizing, 
we calculate the torque on a single superparamagnetic nanoparticle, which depends on 
the external magnetic field and the angle 𝜃!" between anisotropy axis and field. To 
obtain the torque on a single bead, we assume the bead consists of a polymer matrix 



with embedded, identical, superparamagnetic nanoparticles that are all aligned in the 
same direction, so 𝜏!"#$%& = 𝑁!"𝜏!" . We extract the torque on the bead as a 
function of field and orientation 𝜃!" from a lookup table during the simulations to 
reduce computation time. 
 
Two examples of simulated angular traces are depicted in Figure S2 and Figure S3. 
We simulate the angle 𝜃, and we deduce the corresponding 𝑥 and 𝑦 positions using 
the parametric equations for an ellipse, arbitrarily selecting a length for the major and 
minor axes. Two examples are shown: one at 1 mT (Figure S2), where the speed is 
essentially only limited by drag; and one at 24 mT (Figure S3), when the motor 
nearly stalls. We display the 𝑥 and 𝑦 positions first to facilitate comparison with the 
experimental datasets (Figure S7 and Figure S8). 
 

 
Figure S2 Numerically simulated trace of a magnetic bead spun around by a rotary motor in an 
external magnetic field at 1 mT. The full trace is 25 s long. Shown are the 𝑥 position vs. time (A), 𝑦 
position vs. time (B), the (𝑥, 𝑦) positions over the full trace (C), the “wrapped” angle vs. time and its 
full-trace histogram (D), and the “unwrapped” angle vs. time (E). 
 



 
Figure S3 Numerically simulated trace of a magnetic bead spun around by a rotary motor in an 
external magnetic field at 24 mT. The full trace is 25 s. Shown are the 𝑥 position vs. time (A), 𝑦 
position vs. time (B), the (𝑥, 𝑦) positions over the full trace (C), the “wrapped” angle vs. time and its 
full-trace histogram (D), and the “unwrapped” angle vs. time (E). 
 
Traces simulated over a wide range of fields are used to extract the average motor 
speed, the bead orientation during stall, and the angular fluctuations of the bead 
during stall versus magnet distance. These extracted quantities are plotted in Figure 
S4, Figure S5, and Figure S6, respectively. These figures serve as comparison to 
Figures 3 and 4 of the main text. We fit the simulations with the analytical 
approximations: the average speed of the rotating bead in Figure S4 with Equation 
S9 and the mean angle in Figure S5 with Equation 5 of the main text. 
 



 
Figure S4 Numerical simulation of the average motor speed versus magnet height. The blue data 
points are the numerically simulated data, and the red line is the fit to the analytical approximation 
(Equation S9). The fit parameters are 𝑁𝑉 = 4.8 ∙ 10!! µm3, 𝐶 = 1.7 kJ/m3, and 𝜏!"#"$ = 1.0 ∙ 10! 
pN·nm. The inset shows a zoom-in near the stall field, where the effect of thermal fluctuations is 
apparent. 
 
 



 
Figure S5 Numerical simulation of the mean bead orientation versus magnet height. The blue data 
points are the numerically simulated data, and the red line is the fit to the analytical approximation 
(Equation 3 of the main text). The fit parameters are 𝜃! = 3.8°, and 𝜏!"#"$ = 691 pN·nm. 
 



 
Figure S6 Numerical simulation of the standard deviation in bead orientation versus magnet height. 
The blue data points are the numerically simulated data. 
 
In Figure S5 and Figure S6, we observe that the mean and standard deviation in the 
angle do not go to zero for high fields, but level off at a nonzero value. This is 
because the trap stiffness saturates at high fields. The expected mean angle at high 
fields is !! asin 𝜏!"#"$ 𝜏!,!"# ≈ 5°, and the expected standard deviation at high field 
is ≈ 1°. 
  
From Figure S4 and Figure S5, we observe that the analytical expressions fit the 
numerical simulations reasonably well. This good agreement makes it possible for us 
to employ the analytical expressions to compare to the experimental data instead of 
the numerical simulations. As a concomitant advantage, the analytical expressions are 
more convenient to use than the numerical simulations, because the calculations are 
faster. 
 

S6 Experimental traces of the bead position  
In our magnetic tweezers assay, a tracking algorithm determines the position of the 
bead in each of the recorded video images. We convert the extracted 𝑥 and 𝑦 positions 
to an angular position using a fit to the mathematical function that describes an 



ellipse. Two examples of such angular traces are depicted in Figure S7 and Figure 
S8: one at 1 mT when the speed is essentially only limited by drag (Figure S7) and 
one at 9 mT when the motor nearly stalls (Figure S8). 
 

 
Figure S7 Experimentally recorded trace of a magnetic bead spun around by the bacterial flagellar 
motor in an external magnetic field at 1 mT. The full trace is approximately 15 s. Shown are the 𝑥 
position vs. time (A), 𝑦 position vs. time (B), the (𝑥, 𝑦) positions over the full trace with fitted ellipse  
(C), the “wrapped” angle vs. time and its full-trace histogram (D), and the “unwrapped” angle vs. time 
(E). 
 

 
Figure S8 Experimentally recorded trace of a magnetic bead spun around by the bacterial flagellar 
motor in an external magnetic field at 9 mT. The full trace is approximately 30 s. Shown are the 𝑥 
position vs. time (A), 𝑦 position vs. time (B), the (𝑥, 𝑦) positions over the full trace with fitted ellipse 
(C), the “wrapped” angle vs. time and its full-trace histogram (D), and the “unwrapped” angle vs. time 
(E). 
 



S7 Motor losing function 
In a particular measurement, we found the motor to lose some and later on most of its 
torque-generating power (Figure S9). We find such a case to be exceptional.  
	
  

	
  
Figure S9	
  Motor losing function during measurement. During the experiment, the magnet distance 
to the sample is first decreased in discrete steps and then increased again in the same fashion, as 
indicated by the color coding going from blue to red. In (A), the color coding starts at a magnet height 
of 19.6 mm, then goes down to 1 mm and back up to 19.6 mm. In (B)-(D), only part of the data in (A) 
is used: the color coding starts at a magnet height of 7 mm, then goes down to 1 mm and back up to 9 
mm. (A) Average motor speed versus magnet height. The dashed black lines are fits to the analytical 
approximation (Equation S9). The fit parameters are 𝑁𝑉 = 7.0 ∙ 10!!  µm3, 𝐶 = 30  J/m3, and 
𝜏!!"!# = 923 pN·nm for the upper curve and 𝜏!"#"$ = 799 pN·nm for the lower curve. (B) Bead 
position during stall. The dashed line is an ellipse fit to rotation data of the same motor. (C) Mean 
angular position at different magnet heights. The grey-colored lines are coplotted simulations 
(Equation 3 of the main text), only different in the motor torque. The motor torque increases from 
black to white from 𝜏!"#"$ = 100 pN·nm to 800 pN·nm with 𝜃! = 218°. The black dashed lines are 
fits to the data with fitted parameters 𝜃! = 218° and 𝜏!"#"$ = 229 pN·nm for the upper curve and 
𝜏!"#"$ = 626 pN·nm for the lower curve. (D) Standard deviation in angular position at different 
magnet heights. The grey-colored lines are coplots of Equation 4 of the main text with 𝜅!!!" = 400 
pN·nm/rad  [7,8], 𝜅!"#$ is based on previous results [3], and 𝜏!"#"$ as in (C). The dotted line indicates 
the fluctuations under a minimal stiffness, only due to the hook for 𝜅!!!" = 400 pN·nm/rad. 
 
In this case, the motor torque reduces during stall. This reduction can be seen from 
Figure S9(A) and (C). At the start of the experiment (blue data in the average speed-
versus-magnet height plot), the motor rotates at approximately 35 Hz. As the 
magnetic field in the sample plane increases, the average speed decreases until the 
motor stalls. During stall, the magnetic field strength does not affect the average 



speed; the speed remains 0 Hz. When reducing the magnetic field strength again, the 
motor only escapes from stall at lower field strength than it entered stall, indicating a 
reduced motor torque. Further, after escaping from stall, the motor does not recover to 
its initial speed, again indicating a reduced motor torque. Figure S9(C) shows that 
the motor enters stall (blue data) at a higher field than it escape from stall (red data). 
In addition, it requires higher field strengths to force the bead to align with the field 
than when the magnetic torque is reduced again, indicating a higher motor torque 
during the first part of the period of stall than during the second part. 
 
When the magnetic field becomes less than 2 mT, the motor speed suddenly drops to 
less than 0.5 Hz. As if the reduced motor torque after stall was an indicator for some 
sort damage to the motor, the motor speed reduces just when the magnetic torque 
starts to become negligible (≈ 1-2 mT). The change in speed happens instantaneously 
on the time scale of our measurement; the average speed at magnet height 16.5 mm is 
8.4 Hz, because the sudden change in speed happened during that measurement point, 
and we averaged over the full measurement point. 
 

S8 Double spring system: motor-bead-magnetic trap 
In our experimental system (Figure 1 of the main text), the thermal fluctuations of the 
magnetic bead are constrained by the magnetic trap and by the flagellar system of 
motor and hook. This system is described as a double spring system with two 
torsional springs, the magnetic trap and the hook, working in parallel (Figure S10). 
Because the two springs work in parallel, the stiffness of the system is simply the sum 
of the two spring constants, i.e., 𝜅!"!#$% = 𝜅!"#$ + 𝜅!!!" . The amplitude of the 
angular fluctuations depends on the thermal energy 𝑘!𝑇 and on the stiffness of the 
system 𝜅!"!#$%, and is described by equipartition theorem, i.e., 𝜃! = 𝑘!𝑇 𝜅!"!#$%. 
 
In our magnetic tweezers setup, 𝜅!"#$ depends on the external magnetic field, and can 
be varied from ≈ 0− 10  𝑝𝑁 ∙ 𝜇𝑚 𝑟𝑎𝑑. The hook stiffness 𝜅!!!" is independent of 
the magnetic field, but depends on the external torque stored in the hook; a normal-
size hook has a soft initial phase with 𝜅!!!" ≈ 0.4  𝑝𝑁 ∙ 𝜇𝑚/𝑟𝑎𝑑 up to ≈ π rotation 
and a more rigid phase thereafter [7,8]. Assuming the torsional stress in the hook 
results from a motor torque of approximately 1  𝑝𝑁 ∙ 𝜇𝑚, the hook dominates the 
stiffness of the system at low fields, whereas at high fields, the magnetic trap 
dominates. Therefore the hook stiffness cannot be neglected, as is usually done for 
nucleic acid tethers, and should be considered when assessing the thermal fluctuations 
of the bead. 
 



 
Figure S10 Double spring system. The two torsional springs, the magnetic trap and the hook, work 
on the magnetic bead in parallel. 
 

S9 Instantaneous speed in the deterministic approximation 
In Supplement S2, the third remark about the sine approximation mentions the 
instantaneous speed of the motor. Here, we address the instantaneous speed of the 
motor in the deterministic regime in contrast to the average speed of the motor 
covered in Supplement S3.  
Rewriting Equation S.9 of Ref. [4] gives the angle of the bead: 
 𝑥 = arccot 𝐴 tan 𝐵 𝑡 − 𝑡! − 𝜋 4 Equation S15 

where 𝐴 = !!!!!
!!!!!

, 𝐵 = 𝐶!! − 𝐶!!, and 𝑥, 𝐶!, and 𝐶! are as defined in Supplement 

S3, i.e., 𝑥 = 𝜃 − 𝜃!, 𝐶! = 𝜏! 𝛾!"#$ , and 𝐶! = 𝜏!"#"$ 𝛾!"#$ . An example trace is 
plotted in Figure S11(A). 
 

	
  
Figure S11 Angle and speed trace in the deterministic approximation. (A) The “unwrapped” angle 
vs. time. (B) The instantaneous speed vs. time. The traces correspond to the data in Figure S12 at 6 
mm magnet height. 



The derivative of Equation S15 gives the instantaneous speed: 
 

𝑥 = −
𝐴  𝐵 sec 𝐵 𝑡 − 𝑡!

!

1+ 𝐴! tan 𝐵 𝑡 − 𝑡!
! Equation S16 

An example of an instantaneous speed trace is plotted in Figure S11(B). 
 
At a range of magnet heights, we compute the instantaneous speed over multiple 
turns, and we determine the average speed, its standard deviation, its maximum, and 
its minimum. The results are plotted below. 

	
  
Figure S12	
  Speeds versus magnet height. The blue data show the average speed over multiple turns 
and its standard deviation. The green data show the highest and lowest speeds. The red line is the 
analytical expression given in Equation S8. 
 
As already mentioned in Supplement S2, the instantaneous motor speed at certain 
bead orientations actually increases compared to the drag-limited speed. This happens 
because at those orientations the motor torque and magnetic torque work in the same 
direction. 
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