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S1 The Stoner-Wohlfarth model 
Magnetic beads, such as those we employ, usually consist of magnetite (Fe3O4) or 

maghemite (γ-Fe2O3) nanoparticles (≈ 8 nm) dispersed in a non-magnetic polymer 

matrix [1,2]. Here we numerically determine the torque on a single nanoparticle. 

 

The torque on a nanoparticle is given by: 

 |𝜏| = |𝑚⃗⃗⃗ × 𝐵⃗⃗| = |𝑚⃗⃗⃗||𝐵⃗⃗| sin 𝜃2 S1 

where 𝑚⃗⃗⃗ is the magnetic moment of the nanoparticle, 𝐵⃗⃗ is the external magnetic field, 

and 𝜃2 is the angle between 𝑚⃗⃗⃗ and 𝐵⃗⃗ (as indicated in Figure 1(a) of the main text). In the 

Stoner-Wohlfarth model [3], the magnetic moment 𝑚⃗⃗⃗ remains constant in magnitude, but 

its orientation depends on the orientation of the nanoparticle 𝜃𝑁𝑃 (Figure 1(a)) and the 

external magnetic field 𝐵⃗⃗. We numerically determined the orientation of the magnetic 

moment 𝑚⃗⃗⃗ and consequently the torque on a single nanoparticle based on the orientation 

of the anisotropy axis 𝜃𝑁𝑃 and based on the magnetic field 𝐵⃗⃗. 

S1.1 The orientation of the magnetic moment 
We assume the nanoparticle has a single magnetic moment and that the free energy of 

this single nanoparticle is given by Equation 2 in the main text: 

 𝐹 = 𝐾 sin2 𝜃1 − |𝑚⃗⃗⃗||𝐵⃗⃗| cos 𝜃2 S2 

where 𝜃1 and 𝜃2 are as indicated in Figure 1(a) of the main text, 𝐾 = 1

2
𝐶𝑉 (where 𝐶 is the 

anisotropy constant and 𝑉 is the volume of the nanoparticle), and |𝑚⃗⃗⃗| = |𝑀⃗⃗⃗|𝑉 (where 𝑀⃗⃗⃗ 

is the magnetization of the nanoparticle). We use sin2 𝑥 = (1 − cos 2𝑥) 2⁄  to rewrite the 

equation for the free energy as: 

 𝜂 = 1 − cos 2𝜃1 − ℎ cos 𝜃2 S3 

where 𝜂 = 2𝐹 𝐾⁄  and ℎ = 2|𝑚⃗⃗⃗||𝐵⃗⃗| 𝐾⁄ . Stoner and Wohlfarth already found that the 

magnetic moment will be in the same plane as the anisotropy axis and the magnetic field, 

hence 𝜃𝑁𝑃 = 𝜃1 + 𝜃2 [3]. 

 

To obtain the orientation 𝜃2 of the magnetic moment 𝑚⃗⃗⃗, we find the location of the 

energy minima for 𝜂. We use the first derivative of 𝜂: 

 𝜕𝜂

𝜕𝜃2
= 2 sin(2(𝜃𝑁𝑃 − 𝜃2)) + ℎ sin 𝜃2 = 0 S4 

An energy minimum is found, when the second derivative 𝜕2𝜂 𝜕𝜃2
2⁄ > 0. We find either 

one or two minima. At high absolute fields |𝐵⃗⃗|, only one energy minimum exists, and the 

angle 𝜃2 at which the minimum occurs, defines the orientation of the magnetic moment. 

If the absolute field |𝐵⃗⃗| is decreased, a second energy minimum occurs, and the 

orientation of the magnetic moment depends on its previous orientation (and not on the 

depth of the energy wells), causing hysteresis in the system’s response. Once we find the 

orientation 𝜃2 of the magnetic moment 𝑚⃗⃗⃗, we can calculate the torque using |𝜏| =

−|𝑚⃗⃗⃗||𝐵⃗⃗| sin 𝜃2. 
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S1.2 High and low field approximations 
For special cases, such as extreme values of ℎ, there are analytical solutions for Equation 

S4, which allow us to predict and verify our numerical calculations in extreme regimes of 

ℎ. 

 

Generally, in the presence of an external field, there will be a competition between 

alignment of the magnetic dipole moment 𝑚⃗⃗⃗ with the external magnetic field 𝐵⃗⃗ and 

alignment with the anisotropy axis. Depending on the values of 𝐾 and |𝑚⃗⃗⃗||𝐵⃗⃗| in 

Equation S2, the dipole will align more with the anisotropy axis or more with the field. 

S1.2.1 Torque on a single nanoparticle at low magnetic field 
From Stoner and Wohlfarth [3], we know that 𝜃𝑁𝑃 = 𝜃1 + 𝜃2, so Equation S4 can be 

written as: 

 2 sin(2𝜃1) = −ℎ sin 𝜃2 S5 

If 𝐾 ≫ |𝑚⃗⃗⃗||𝐵⃗⃗|, so ℎ ≈ 0, then we can give an upper limit for 𝜃1, given that |sin 𝑥|max =

1: 

 
𝜃1 =

1

2
asin (

ℎ

2
) S6 

So given ℎ ≈ 0, the upper limit for 𝜃1 ≈ 0. In this limit 𝜃2 can take all values, but 𝜃1 can 

only take a limited range of values close to zero, therefore the torque can be written, 

taking into account 𝜃2 ≈ 𝜃𝑁𝑃, as: 

 |𝜏| = −|𝑚⃗⃗⃗||𝐵⃗⃗| sin 𝜃𝑁𝑃 S7 

The magnetic torque is then set by the torque resulting from misalignment between the 

magnetic moment 𝑚⃗⃗⃗ and the external magnetic field 𝐵⃗⃗. More intuitively, one can see that 

if 𝐾 ≫ |𝑚⃗⃗⃗||𝐵⃗⃗|, the magnetic moment 𝑚⃗⃗⃗ will be strongly aligned with the anisotropy axis 

and the nanoparticle will essentially act as a permanent magnet. 

S1.2.2 Torque on a single nanoparticle at high magnetic field 

Starting with Equation S5, but now taking the limit in which |𝑚⃗⃗⃗||𝐵⃗⃗| ≫ 𝐾, so ℎ ≫ 1, we 

can give an upper limit for 𝜃2, given that |sin 𝑥|max = 1: 

 
𝜃2 = asin (

2

ℎ
) S8 

So given ℎ ≫ 1, the upper limit for 𝜃2 ≈ 0. In this limit 𝜃1 can take all values, but 𝜃2 can 

only take a limited range of values close to zero, therefore the torque can be written, 

taking into account 𝜃1 ≈ 𝜃𝑁𝑃, as: 

 |𝜏| = −𝐾 sin 2𝜃𝑁𝑃 S9 

The maximum magnetic torque on a single nanoparticle will therefore become 

independent of the magnetic field 𝐵⃗⃗. The maximum torque occurs at 𝜃𝑁𝑃 = 45° and 

equals |𝜏|𝑚𝑎𝑥 = 𝐾. The torque on the nanoparticle is then set by the torque resulting 

from misalignment between the magnetic moment 𝑚⃗⃗⃗ and the anisotropy axis. So the 

anisotropy axis, so to speak, “pulls” on the magnetic moment, but it cannot “pull” more 

strongly on the magnetic moment than |𝜏|𝑚𝑎𝑥 = 𝐾. 
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S1.2.3 Torsional stiffness at high magnetic field near 𝜽𝑵𝑷 = 𝟎° 
The torsional stiffness 𝜅𝜃 experienced by a single nanoparticle in high external fields can 

be derived from the expression for the torque at high fields by taking the derivative of 

Equation S9: 

 
𝜅𝜃 = −

𝜕𝜏

𝜕𝜃𝑁𝑃
= 𝐾 ∙ 2 cos 2𝜃𝑁𝑃 S10 

The torsional stiffness at high external fields near 𝜃𝑁𝑃 = 0° can therefore simply be 

expressed as |𝜅𝜃| = 2𝐾. 

 

S1.3 Numerical simulations 

S1.3.1 The torque as a function of 𝒉 and 𝜽𝑵𝑷 
In the simulations, we start with the nanoparticle aligned with the field, so 𝜃𝑁𝑃 = 0. Then 

we keep the field 𝐵⃗⃗ constant, so ℎ is constant, and rotate the nanoparticle over 2π. For 

each angle 𝜃𝑁𝑃, we determine the angle 𝜃2 of the magnetic moment 𝑚⃗⃗⃗. Once we obtained 

𝜃2, we calculate the torque and normalize it by 𝐾: 

 |𝜏| 𝐾⁄ = −
|𝑚⃗⃗⃗⃗||𝐵⃗⃗|

𝐾
sin 𝜃2 = −

ℎ

2
sin 𝜃2 S11 

where ℎ = 2|𝑚⃗⃗⃗||𝐵⃗⃗| 𝐾⁄ . The results of the numerical simulations are shown in Figure S1. 

The graphs should be read from bottom to top, i.e. from 𝜃𝑁𝑃 = 0 to 𝜃𝑁𝑃 = 2𝜋, because 

of hysteresis effects. 

 
Figure S1 Heat maps for 𝜃2 and the torque on a nanoparticle. a) The angle 𝜃2 between the magnetic moment 𝑚⃗⃗⃗ and the external 

magnetic field 𝐵⃗⃗ plotted as a function of the orientation of the nanoparticle 𝜃𝑁𝑃 and the magnetic field |𝐵⃗⃗|, (or, equivalently, ℎ =

2|𝑚⃗⃗⃗||𝐵⃗⃗| 𝐾⁄ ). b) The torque normalized by 𝐾 plotted as a function of the orientation of the nanoparticle 𝜃𝑁𝑃 and the magnetic field |𝐵⃗⃗|, 

(or, equivalently, ℎ = 2|𝑚⃗⃗⃗||𝐵⃗⃗| 𝐾⁄ ). 

In both plots we observe three regimes ℎ < 2, 2 < ℎ < 4, and ℎ > 4. In the first regime, 

where ℎ < 2, we note that |𝑚⃗⃗⃗||𝐵⃗⃗| < 𝐾, so the anisotropy axis “pulls” strongly on the 

magnetic moment 𝑚⃗⃗⃗, and, for values of ℎ closer to zero, the moment 𝑚⃗⃗⃗ will act more and 

more as a permanent moment. The angle 𝜃2 increases monotonically with the angle 𝜃𝑁𝑃 

of the nanoparticle (Figure S2.a). The torque plot is 2𝜋-periodic and resembles the torque 

plot for a permanent magnetic moment 𝑚0 (Figure S8) in this regime. In the second 

regime, where 2 < ℎ < 4, the orientation of the magnetic moment flips during rotation of 

the nanoparticle (Figure S2.b). This flipping also causes a sudden jump in the torque plot. 
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The torque plot is π-periodic. In the third regime ℎ > 4, i.e. |𝑚⃗⃗⃗||𝐵⃗⃗| > 2𝐾, the magnetic 

moment 𝑚⃗⃗⃗ remains close to the magnetic field 𝐵⃗⃗ and does not follow the rotation of the 

nanoparticle (Figure S2.c). The transitions of 𝜃2 at 𝜃𝑁𝑃 =
𝜋

2
, 𝜋, and 

3𝜋

2
, from 𝜃2 = 0 

(blue) to 𝜃2 = 2𝜋 (red) are not discontinuous, as the colour might suggest. The torque 

plot shows a π-periodic behaviour in this regime. 

 
Figure S2 Rotation of a nanoparticle in a stationary magnetic field. a) For ℎ = 1.9, the magnetic moment rotates along with the 

anisotropy axis. The grey ellipses are the nanoparticles at different orientations. Rotation of the nanoparticle starts at 0, i.e. alignment 

with the field. The red arrows indicate the stationary magnetic field 𝐵⃗⃗. The green arrows are the magnetic moments of the nanoparticle 

at different orientations after rotation in the counter clockwise direction. b) For ℎ = 2.1, the magnetic moment jumps to a different 

orientation between 4π/6 and 5π/6, and between 10π/6 and 11π/6. c) For ℎ = 4.1, the magnetic moment remains closely aligned to the 

magnetic field during rotation of the nanoparticle. 

S1.3.2 The torsional stiffness as a function of 𝒉 
In Figure S3, we focus on the torque and the torsional stiffness. From the plot of the 

torque in Figure S1.b, we extract the torque as function of 𝜃𝑁𝑃 for different values of ℎ, 

(Figure S3.a). The derivatives of these curves near 𝜃𝑁𝑃 = 0 yield the stiffness for 

different values of ℎ (Figure S3.b). 

 
Figure S3 The torsional stiffness at different values of ℎ. a) The torque dependence on 𝜃𝑁𝑃 for different values of ℎ indicated by 

the different colours (see legend). b) The stiffness dependence on ℎ. The blue dots are the simulated data, and the red line is a co-plot 

of Equation S12. 

Figure S3.a shows that for values of ℎ < 2, the torque is 2𝜋-periodic and closer to ℎ = 0, 

the curves look more like − sin 𝜃𝑁𝑃, as expected (S1.2.1). Approaching ℎ = 2, the 

minima of the curves shift toward 𝜃𝑁𝑃 = 3𝜋 4⁄  and the maxima towards 𝜃𝑁𝑃 = 5𝜋 4⁄ . 

For values 2 < ℎ < 4, the curve becomes π-periodic and jumps in the torque occur 
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between π/2 and 3π/4. Beyond ℎ > 4, the torque curve is continuous again and starts to 

resemble − sin 2𝜃𝑁𝑃, as expected (S1.2.2). 

 

In Figure S3.b, the simulated data agrees very well with the co-plot, which is derived 

from the small angle approximation of the stiffness, Equation 3 in the main text: 

 𝜅𝜃 =
𝐵 𝐶 𝑀 𝑁 𝑉

𝐶 + 𝑀 𝐵
=

𝐵 2𝐾
𝑉

 𝑚
𝑉

 𝑁 𝑉
2𝐾
𝑉

+ 𝑚
𝑉

 𝐵
= 𝑁

2𝐾 𝑚𝐵

2𝐾 + 𝑚𝐵
= 2𝐾

2𝑚𝐵 𝐾⁄

4 + 2𝑚𝐵 𝐾⁄
= 2𝐾

ℎ

4 + ℎ
 S12 

where 𝐾 = 1

2
𝐶𝑉, 𝑚 = 𝑀𝑉, 𝑁 = 1, and ℎ = 2𝑚𝐵 𝐾⁄ . For low values of ℎ, the stiffness 

increases linearly, as for a permanent magnetic moment. The stiffness 𝜅𝜃 2𝐾⁄  approaches 

unity for larger values of ℎ, as expected (S1.2.3). 

S1.4 Mapping single nanoparticle behaviour to bead behaviour 
We will simply assume that the anisotropy inside the magnetic bead arises from the 

anisotropy axes of the nanoparticles all pointing in the same direction. In addition, we 

will assume that all nanoparticles have the same 𝐾 = 1

2
𝐶𝑉 and 𝑚 = 𝑀𝑉, and they do not 

interact with each other. The torque on the bead is then simply calculated by multiplying 

the torque on a single nanoparticle 𝜏𝑁𝑃 by the number of nanoparticles 𝑁𝑁𝑃, hence, 

𝜏𝑚𝑎𝑔𝑛𝑒𝑡𝑠 = 𝑁𝑁𝑃𝜏𝑁𝑃. 

S2 Numerical calculation of the torque on a single 
superparamagnetic nanoparticle 
The torque on a superparamagnetic nanoparticle is again given by Equation S1. In 

contrast to the Stoner-Wohlfarth model, however, for a superparamagnetic nanoparticle, 

both the magnitude of the magnetic moment |〈𝑚⃗⃗⃗〉| and the angle 〈𝜃2〉 change with the 

orientation of the nanoparticle 𝜃𝑁𝑃 and the external magnetic field 𝐵⃗⃗. Here we 

numerically calculate the magnitude of the magnetic moment |〈𝑚⃗⃗⃗〉| and its orientation 

〈𝜃2〉, based on the magnetic field 𝐵⃗⃗ and the orientation of the anisotropy axis 𝜃𝑁𝑃 (Figure 

1(a) main text). The magnitude of the magnetic moment |〈𝑚⃗⃗⃗〉| and the angle 〈𝜃2〉 are then 

used to calculate the torque on a single superparamagnetic nanoparticle. 

S2.1 Mathematical procedure 
We assume the nanoparticle has a single magnetic moment and that the free energy of 

this single nanoparticle is given by Equation S2 [4]. In contrast to the Stoner-Wohlfarth 

model, we will use the magnitude of the expected magnetic moment here, which is 

dependent on the field 𝐵⃗⃗ and the orientation 𝜃𝑁𝑃. The magnetic dipole can adopt all 

possible orientations 𝑚⃗⃗⃗ = 𝑚⃗⃗⃗(𝜃, 𝜙), with 𝜃 ranging from 0 to π and 𝜙 ranging from 0 to 

2π or, equivalently, from –π to π. The partition function for this nanoparticle is then given 

by: 

 

𝑍 = ∫ ∫ sin 𝜃 exp (−
𝐹

𝑘𝐵𝑇
) 𝑑𝜃

𝜋

0

𝑑𝜙

2𝜋

0

. S13 

Consequently, the mean values for 𝑚𝑥, 𝑚𝑦 and 𝑚𝑧 are given by: 



 
9 

 

〈𝑚𝑥〉 =
1

𝑍
∫ ∫ sin 𝜃 exp (−

𝐹

𝑘𝐵𝑇
) (|𝑚⃗⃗⃗| sin 𝜃 cos 𝜙)𝑑𝜃

𝜋

0

𝑑𝜙

2𝜋

0

 S14 

 

〈𝑚𝑦〉 =
1

𝑍
∫ ∫ sin 𝜃 exp (−

𝐹

𝑘𝐵𝑇
) (|𝑚⃗⃗⃗| sin 𝜃 sin 𝜙)𝑑𝜃

𝜋

0

𝑑𝜙

2𝜋

0

 S15 

 

〈𝑚𝑧〉 =
1

𝑍
∫ ∫ sin 𝜃 exp (−

𝐹

𝑘𝐵𝑇
) (|𝑚⃗⃗⃗| cos 𝜃)𝑑𝜃

𝜋

0

𝑑𝜙

2𝜋

0

 S16 

To compute these mean values, we perform numerical integrations over the surface of a 

sphere. 

 

We define a coordinate system such that the magnetic field 𝐵⃗⃗ is directed along the 𝑧-

direction and the anisotropy axis of the magnetic nanoparticle lies in the 𝑦𝑧-plane, i.e. 

𝜙𝑁𝑃 = 𝜋 2⁄ . Increasing values of 𝜃𝑁𝑃 then correspond to rotation of the magnetic 

nanoparticle in the 𝑦𝑧-plane. 

 

The numerical integration is performed for different values of |𝐵⃗⃗| and 𝜃𝑁𝑃. For the 

numerical integration over the surface of a sphere we use Lebedev quadrature [5], which 

exploits a grid with a certain number of points, in our case 5810, where each point on the 

grid has a distinct weight. Summing over the whole grid, while taking into account the 

weights, we obtain an approximation to the surface integral over a sphere. For each point 

on the Lebedev grid, we convert its Cartesian coordinates to spherical coordinates; 

𝜙 = atan(𝑦 𝑥⁄ ), which returns values between –π and π; and 𝜃 = acos(𝑧 𝑟⁄ ), which 

returns values between 0 and π. We use these spherical coordinates to calculate 𝜃1 and 𝜃2 

for each point on the Lebedev grid. In this case we have 𝜃 = 𝜃2, since the field 𝐵⃗⃗ is 

aligned with the 𝑧-axis. We then use the spherical law of cosines to calculate 𝜃1 using: 

𝜃1 = acos(cos 𝜃𝑁𝑃 cos 𝜃 + sin 𝜃𝑁𝑃 sin 𝜃 cos(𝜙 − 𝜙𝑁𝑃)) 

Thus, if we set 𝜙𝑁𝑃 = 𝜋 2⁄  and fix values for |𝐵⃗⃗| and 𝜃𝑁𝑃, we can calculate 𝜃1, 𝜃2, and 𝐹 

for each point on the Lebedev grid and from this determine 〈𝑚𝑥〉, 〈𝑚𝑦〉 and 〈𝑚𝑧〉 by 

numerical integration using Lebedev quadrature. Once we have found 〈𝑚𝑥〉, 〈𝑚𝑦〉 and 

〈𝑚𝑧〉, we convert those values to |〈𝑚⃗⃗⃗〉| = √〈𝑚𝑥〉2 + 〈𝑚𝑦〉2 + 〈𝑚𝑧〉2, 

𝜃2 = acos(〈𝑚𝑧〉 |〈𝑚⃗⃗⃗〉|⁄ ) with values between 0 and π, and 𝜙𝜇 = atan(〈𝑚𝑦〉 〈𝑚𝑥〉⁄ ) with 

values in the range from –π to π. 

 

Using the obtained values for |〈𝑚⃗⃗⃗〉|, 𝜃2, and 𝜙𝜇, the magnitude of the torque can then be 

calculated according to Equation S1. In addition to the magnitude of the torque we 

would like to know the sign of the torque, since we know the axis along which the torque 

acts. If we define rotation about the 𝑥-axis from the positive 𝑦-axis towards the positive 

𝑧-axis as an increase in 𝜃𝑁𝑃, then the one-dimensional torque along 𝜃𝑁𝑃 is given by: 

 𝜏 = (− sin 𝜙𝜇)|〈𝑚⃗⃗⃗〉||𝐵⃗⃗| sin 𝜃2 S17 

Alternatively, one can directly compute the following cross product to compute the 

torque once 〈𝑚𝑥〉, 〈𝑚𝑦〉 and 〈𝑚𝑧〉 are known (〈𝑚𝑥〉 will be zero, because 〈𝑚⃗⃗⃗〉 will be 

oriented between the field and the anisotropy axis in 𝑦𝑧-plane. See Figure S4.c): 
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𝜏 = 〈𝑚⃗⃗⃗〉 × 𝐵⃗⃗ = |

𝒊 𝒋 𝒌

0 〈𝑚𝑦〉 〈𝑚𝑧〉

0 0 𝐵𝑧

| = |
〈𝑚𝑦〉 〈𝑚𝑧〉

0 𝐵𝑧
| 𝒊 = 〈𝑚𝑦〉𝐵𝑧𝒊 S18 

In both cases, in the single dimension of 𝜃𝑁𝑃 (Equation S17) and in three dimensions 

(Equation S18), the torque is directed to align 𝑚⃗⃗⃗ with 𝐵⃗⃗. The approach of calculating 

torque via |𝑚⃗⃗⃗|, 𝜃2 and 𝜙𝜇 is more cumbersome than using Equation S18, but provides 

more insight into what happens to the magnetic moment of the nanoparticle. 

 

The values employed in the numerical calculations presented below are: 

𝑘𝐵 = 1.38 ∙ 10−23 𝐽 𝐾⁄ , 𝑇 = 300𝐾, |𝑚⃗⃗⃗| =
𝑘𝐵𝑇

𝐵0
 with 𝐵0 = 12 𝑚𝑇 [6] and 𝑉 =

|𝑚⃗⃗⃗⃗|

𝑀𝑠𝑎𝑡
 with 

𝑀𝑠𝑎𝑡 = 43.3 𝑘𝐴/𝑚 [6]. The number of nanoparticles 𝑁𝑁𝑃 = 1 and the values for 

𝐾 = 1

2
𝐶𝑉 are varied by varying 𝐶. 

 

S2.2 High and low anisotropy constant approximations 
For special cases involving particular values of 𝜃𝑁𝑃 and/or extreme values of 𝐾, there are 

analytical solutions to our numerical calculations of the magnetic moment. For those 

cases, the analytical solutions provide a nice tool to predict and verify our numerical 

calculations. 

S2.2.1 Magnetic moment as a function of magnetic field at 𝜽𝑵𝑷 = 𝟎° for 
𝑲 ≪ 𝒌𝑩𝑻 
In the limit 𝐾 ≪ 𝑘𝐵𝑇, the magnetic dipole is essentially free to rotate and orient in any 

direction. In the extreme case, when 𝐾 = 0, Equation S2 reduces to: 

 𝐹 = −|𝑚⃗⃗⃗||𝐵⃗⃗| cos 𝜃2 S19 

In this case 〈𝑚𝑥〉 = 〈𝑚𝑦〉 = 0, and 〈𝑚𝑧〉 can be solved analytically: 

 
〈𝑚𝑧〉 = |𝑚⃗⃗⃗|𝐿(|𝑚⃗⃗⃗||𝐵⃗⃗|𝛽) = |𝑚⃗⃗⃗| (coth (

|𝑚⃗⃗⃗||𝐵⃗⃗|

𝑘𝐵𝑇
) −

𝑘𝐵𝑇

|𝑚⃗⃗⃗||𝐵⃗⃗|
) S20 

where 𝐿(𝑥) is the Langevin function, 𝛽 = 1 𝑘𝐵𝑇⁄ , and 𝐵⃗⃗ points in the 𝑧-direction. In this 

case the magnetic dipole will act as a paramagnet. 

S2.2.2 Magnetic moment as a function of magnetic field at 𝜽𝑵𝑷 = 𝟎° for 
𝑲 ≫ 𝒌𝑩𝑻 
In the limit 𝐾 ≫ 𝑘𝐵𝑇, the magnetic dipole will be aligned with the anisotropy axis and 

essentially only exists in one of two aligned states. With the magnetic field 𝐵⃗⃗ pointing in 

the 𝑧-direction and 𝜃𝑁𝑃 = 0°, the situation will resemble a two-state paramagnet. In this 

case 〈𝑚𝑥〉 = 0, 〈𝑚𝑦〉 = 0, and 〈𝑚𝑧〉 can be solved analytically, yielding: 

 
〈𝑚𝑧〉 = |𝑚⃗⃗⃗| tanh (

|𝑚⃗⃗⃗||𝐵⃗⃗|

𝑘𝐵𝑇
) S21 

Note that if 𝐾 ≫ 𝑘𝐵𝑇, the dipole might not be able to flip between the two aligned states 

on the timescale of the experiment due to a long Néel relaxation time [7]. 
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S2.3 Numerical calculations 

S2.3.1 |𝒎|, 𝜽𝟐, 𝝓𝝁 and torque as a function of magnetic field and orientation of 

the nanoparticle 𝜽𝑵𝑷 
The numerical calculations are performed for three values of 𝐶: one value of 𝐶 similar to 

the value found by fitting to the experimental data, and one value lower and one value 

higher than the fitted 𝐶. The value similar to the fitted value is 𝐶 = 3 ∙ 103  𝐽 𝑚3⁄ , the 

value higher is 𝐶 = 3 ∙ 104  𝐽 𝑚3⁄ , and the lower value is 𝐶 = 0 𝐽 𝑚3⁄ . This low value 

serves as an internal check on the simulations. 

 

Figure S4(i) shows the calculations for 𝐶 = 0 𝐽 𝑚3⁄ , in which case the magnetic dipole 

should act as a pure paramagnet. This paramagnetic case is an internal check on our 

calculations. In the first plot (Figure S4.a(i)), |𝑚⃗⃗⃗| only depends on the magnetic field |𝐵⃗⃗|, 

but not on the angle of the nanoparticle 𝜃𝑁𝑃. In the second plot (Figure S4.b(i)), 𝜃2 is 0 

for positive fields and π for negative fields, which means the dipole moment is always 

aligned with the external field. In the third plot (Figure S4.c(i)), 𝜙𝜇 takes on various 

values, probably because the dipole moment is aligned with the 𝑧-axis and 𝜙𝜇 is not 

really defined in that case. In the fourth plot (Figure S4.d(i)), the torque is zero 

everywhere, since the dipole moment is always aligned with the external field. These 

results all agree with the expectations for a paramagnet, indicating a correct 

implementation of the method used for further calculations. 
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Figure S4 Heat maps for the magnetic moment and torque on a superparamagnetic nanoparticle. The columns of this figure are 

calculations for different values of 𝐶, the values are i) 𝐶 = 0 𝐽 𝑚3⁄ , ii) 𝐶 = 3 ∙ 103  𝐽 𝑚3⁄  and iii) 𝐶 = 3 ∙ 104  𝐽 𝑚3⁄ . The rows of this 

figure display a) The magnitude of the magnetic moment |𝑚⃗⃗⃗| normalized by its maximum value, b) 𝜃2 divided by π, c) 𝜙𝜇 divided by 

π and d) the torque normalized by 𝐾. In all plots the magnetic field runs from 𝐵 = −500 𝑚𝑇 to 𝐵 = 500 𝑚𝑇 and the angle of the 

nanoparticle 𝜃𝑁𝑃 runs from 0 to 2π.  

In Figure S4(ii) and Figure S4(iii), 𝐶 = 3 ∙ 103  𝐽 𝑚3⁄  and 𝐶 = 3 ∙ 104  𝐽 𝑚3⁄ , 

respectively. In the first row, the value of |𝑚⃗⃗⃗| decreases, going from 0, π or 2π towards 

π/2 or 3π/2. This decrease is stronger for higher values of 𝐶. At higher fields, the value of 

|𝑚⃗⃗⃗| still reaches its maximum value 𝑚𝑚𝑎𝑥. If 𝐾 = 1

2
𝐶𝑉 is large compared to |𝑚⃗⃗⃗||𝐵⃗⃗|, the 

dipole prefers to align with the anisotropy axis. The external field 𝐵⃗⃗ then determines 

which of the aligned states is preferred. Closer to 𝜃𝑁𝑃 = 𝜋

2
, the energetic difference 

between the two states decreases and therefore the preference for either one of the states 

is reduced. As a result, the populations in the two states cancel each other, resulting in a 

decrease of the net |𝑚⃗⃗⃗| around π/2 and 3π/2. 
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In Figure S4.b, 𝜃2 is still close to 0 for positive fields and close to π for negative fields, 

which means the dipole moment tends to align with the external field. In reality the 

dipole is only well aligned with the field at 𝜃𝑁𝑃 = 0, π/2, π, 3π/2 or 2π. At intermediate 

angles, the anisotropy energy prevents the dipole from perfect alignment with the 

external field. As 𝐶 increases, the energetic penalty for misalignment between dipole and 

anisotropy axis is larger. The anisotropy axis “pulls” more strongly on the dipole, which 

results in a larger angle 𝜃2 between dipole and external field for larger 𝐶. 

 

In Figure S4.c, 𝜙𝜇 is either –π/2 or π/2, which in both cases means the net dipole moment 

lies in the 𝑦𝑧-plane. This is expected, since we set the anisotropy axis of the nanoparticle 

to rotate in the 𝑦𝑧-plane, i.e. 𝜙𝑁𝑃 = 𝜋/2.  

 

In Figure S4.d, the torque is in both cases (𝐶 = 3 ∙ 103  𝐽 𝑚3⁄  and 𝐶 = 3 ∙ 104  𝐽 𝑚3⁄ ) 

directed to orient the nanoparticle at 0, π or 2π, i.e. to align the anisotropy axis with the 

external field. At π/2 and 3π/2, the torque is zero, but, as these are unstable trapping 

positions, small deviations from these angles will force the nanoparticle to rotate away. 

 
Figure S5 Rotation of a nanoparticle in a stationary magnetic field. The grey ellipses are the nanoparticles at different 

orientations. The red arrows indicate the stationary magnetic field 𝐵⃗⃗. The green arrows are the magnetic moments of the nanoparticle 

at different orientations. The magnetic dipole moment changes both orientation and magnitude during rotation. 

S2.3.2 The net magnetic moment as a function of the external magnetic field at 
𝜽𝑵𝑷 = 𝟎° 
The plot for |𝑚⃗⃗⃗| in Figure S4.a can be used to obtain the magnetization curve. The 

magnetization |𝑀⃗⃗⃗| = |𝑀⃗⃗⃗|(|𝐵⃗⃗|) is an important parameter in Equation 3 of the main text, 

which is used to fit the experimental data for the torsional stiffness. For the fitting 

procedure, we would prefer an analytical expression for |𝑀⃗⃗⃗|(|𝐵⃗⃗|). The curve shown in 

Figure S6 is the lowest row (𝜃𝑁𝑃 = 0°) of the plot of |𝑚⃗⃗⃗| in Figure S4.a, with the slight 

difference that |𝑚⃗⃗⃗| can attain a negative value in Figure S6. 
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Figure S6 Magnetization curves of superparamagnetic nanoparticles with different values of the anisotropy constant 𝐶. In the 

legends of the plots 𝛽 = 1 𝑘𝐵𝑇⁄ . a) In the first plot, the calculated 𝑚 agrees very well with the Langevin function derived for a 

paramagnet. This result provides an additional confirmation that our numerical calculations are correct. b) In the second plot 𝐶 = 3 ∙
103  𝐽 𝑚3⁄ , the calculated value of |𝑚⃗⃗⃗| lies in between the prediction for a classical paramagnet, the Langevin function, and the 

prediction for a two-state paramagnet, the hyperbolic tangent. This result shows how 𝐶 effects the magnetic moment dependence on 

the field. c) In the third plot 𝐶 = 3 ∙ 104  𝐽 𝑚3⁄  and the calculated |𝑚⃗⃗⃗| agrees well with the hyperbolic tangent derived for a two-state 

paramagnet. This result agrees with our expectations for 𝐾 ≫ 𝑘𝐵𝑇 and confirms the correctness of our computational approach. 

Again, we should note that the calculations assume a situation in which the dipole can thermally explore all orientations, while in 

reality the dipole might not be able to flip between the two states on the time scale of our measurements.  

S2.3.3 The torque and torsional stiffness dependence on the magnetic field 
and nanoparticle orientation 𝜽𝑵𝑷 
In Figure S7, we focus on the magnetic torque 𝜏 and the torsional stiffness 𝜅𝜃, and their 

dependence on the nanoparticle orientation 𝜃𝑁𝑃 and on the magnetic field 𝐵⃗⃗. The results 

in Figure S7(i) are based on calculations with 𝐶 = 3 ∙ 103  𝐽 𝑚3⁄ , and in Figure S7(ii) the 

results are based on calculations with 𝐶 = 3 ∙ 104  𝐽 𝑚3⁄ . 

 

In Figure S7.a, we plot the torque as a function of the nanoparticle orientation 𝜃𝑁𝑃 for 

different magnetic field strengths. Here each curve in Figure S7.a is a column of the plot 

for the torque (Figure S4.d), corresponding to a certain magnetic field strength |𝐵⃗⃗|. The 

torque is normalized by its maximum value for that particular field strength. The graphs 

resemble sin(2𝜃)-functions, but have different degrees of skew depending on the 

strength of the magnetic field. The angular position at which the maximum torque occurs, 

shifts with field strength. For small absolute fields, the angle of maximum torque is 45°. 

For such small absolute values of the field (|𝐵⃗⃗| < 𝐵0), the magnetization is linear in the 

field 𝑀⃗⃗⃗ = 𝜒𝐵⃗⃗, where 𝜒 is a tensor. The torque is then proportional to 𝜒𝐵⃗⃗ × 𝐵⃗⃗, which is 

again proportional to sin(2𝜃), where 𝜃 is the angle between field 𝐵⃗⃗ and anisotropy axis. 

This proportionality, 𝜏 ∝ sin(2𝜃𝑁𝑃), explains the maximum torque at 45° for small 

fields. When the magnetic field strength is increased, this angle increases towards, but 

does not reach, 90°. Increasing the external magnetic field 𝐵⃗⃗ further until |𝐵⃗⃗||𝑀⃗⃗⃗| ≫ 𝐶, 

the magnetic torque becomes “stronger” than the torque by the anisotropy axis. As 

expected from S1.2.2, at such high fields the maximum torque occurs again at 45°. 

 

In Figure S7.b, we plot the torsional stiffness 𝜅𝜃 as a function of the magnetic field |𝐵⃗⃗| 
on a log-log scale. This plot is again deduced from the plot for the torque (Figure S4.d). 

The stiffness is computed by taking the derivative along the columns, and we are 

interested in its value near 𝜃𝑁𝑃 = 0. More specifically, to obtain the stiffness near 

𝜃𝑁𝑃 = 0, the torque in the bottom row (𝜃𝑁𝑃 = 0) is subtracted from the torque in the row 

above and divided by 𝑑𝜃, i.e. we take the numerical derivative at 𝜃𝑁𝑃 = 0. The value of 
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𝜅𝜃 2𝐾⁄  approaches unity for increasing magnetic fields. This result confirms our 

expectation that the maximum torsional stiffness should occur at |𝜅𝜃| = 2𝐾. For larger 

values of 𝐶, higher magnetic fields are measured to reach the maximum torsional 

stiffness. The torsional stiffness is fitted to an expression derived in the small angle 

approximation [4]: 

 
𝜅𝜃 = 𝑁 𝑉

𝐶 |𝐵⃗⃗||𝑀⃗⃗⃗|

𝐶 + |𝐵⃗⃗||𝑀⃗⃗⃗|
 S22 

where 𝑁 = 𝑁𝑁𝑃 = 1, and 𝐶 and 𝑁𝑉 are fitting parameters. For |𝑀⃗⃗⃗| we used either 

Equation S23 or S24, fits for both are shown. We observe that the hyperbolic tangent 

|𝑀⃗⃗⃗| fit to the torsional stiffness for 𝐶 = 3 ∙ 104  𝐽 𝑚3⁄  provides the best match. This 

result was expected, since the data for 𝐶 = 3 ∙ 104  𝐽 𝑚3⁄  also provided the best match to 

the hyperbolic tangent |𝑀⃗⃗⃗| in Figure S6. Deviations of the fits in Figure S7.b likely result 

from deviations between the numerical calculations and analytical cases in Figure S6. 

 

 
Figure S7 The columns of this figure are calculations for different values of 𝐶, i) 𝐶 = 3 ∙ 103  𝐽 𝑚3⁄  and ii) 𝐶 = 3 ∙ 104  𝐽 𝑚3⁄ . 

From top to bottom the rows show: a) normalized torque versus angle of the nanoparticle 𝜃𝑁𝑃; b) the stiffness as a function of the 

magnetic field. 

Different expressions of |𝑀⃗⃗⃗| in Equation S22 give slightly different outcomes for the 

torsional stiffness 𝜅𝜃. We can use a classical paramagnetic interpretation similar to 

Equation S20:  
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|𝑀⃗⃗⃗| = 𝑀𝑠𝑎𝑡 (coth (

|𝐵⃗⃗|

𝐵0
) −

𝐵0

|𝐵⃗⃗|
) S23 

with 𝑀𝑠𝑎𝑡 the saturation magnetization and 𝐵0 = 𝑘𝐵𝑇 |𝑚⃗⃗⃗|⁄ . For large magnetic fields |𝐵⃗⃗|, 

the magnetization saturates at 𝑀𝑠𝑎𝑡. For small magnetic fields, the magnetization goes as 

|𝑀⃗⃗⃗| = 𝑀𝑠𝑎𝑡|𝐵⃗⃗| 3𝐵0⁄ . Therefore, 𝜅𝜃 ∝ |𝐵⃗⃗|
2
 at low fields. We can also use a two-state 

paramagnet interpretation similar to Equation S21: 

 
|𝑀⃗⃗⃗| = 𝑀𝑠𝑎𝑡 tanh (

|𝐵⃗⃗|

𝐵0
). S24 

Again, for large fields, the magnetization saturates at 𝑀𝑠𝑎𝑡. For small fields, the 

magnetization goes as |𝑀⃗⃗⃗| = 𝑀𝑠𝑎𝑡|𝐵⃗⃗| 𝐵0⁄  and again 𝜅𝜃 ∝ |𝐵⃗⃗|
2
. In contrast, in the Stoner-

Wohlfarth model, the magnetization is constant: 

 |𝑀⃗⃗⃗| = 𝑀𝑠𝑎𝑡. S25 

At small magnetic fields, the torsional stiffness 𝜅𝜃 ∝ |𝐵⃗⃗| (see Figure S3.b). For all 

interpretations of the magnetization |𝑀⃗⃗⃗|, the stiffness 𝜅𝜃 saturates at high magnetic fields, 

because then 𝜅𝜃 ≈ 𝐶 𝑁 𝑉. 

S2.4 Mapping single nanoparticle behaviour to bead behaviour 
When this model was proposed for superparamagnetic beads [4], the authors posed the 

assumption that all nanoparticles inside the magnetic bead have their anisotropy axes 

pointing in the same direction, have the same 𝐾 = 1

2
𝐶𝑉 and 𝑚 = 𝑀𝑉, and do not interact 

with each other. The torque on the bead is then simply calculated by multiplying the 

torque on a single nanoparticle 𝜏𝑁𝑃 by the number of nanoparticles 𝑁𝑁𝑃, hence, 

𝜏𝑚𝑎𝑔𝑛𝑒𝑡𝑠 = 𝑁𝑁𝑃𝜏𝑁𝑃. 

S3 Calculation of the torque on a permanent magnetic moment 
As a reference point for comparison to Figure S1 and Figure S3, here we provide the 

equivalent figures for a permanent magnetic moment.  

S3.1 The torque as a function of 𝑩 and 𝜽𝑵𝑷 
In the model with the permanent magnetic moment 𝑚0, the angle 𝜃1 = 0 and 𝜃2 = 𝜃𝑁𝑃. 

The torque is given by Equation S7: 

 𝜏 = −𝑚0𝐵 sin 𝜃2 = −𝑚0𝐵 sin 𝜃𝑁𝑃 S26 

so the torque will be 2π-periodic.  

 



 
17 

 
Figure S8 Heat maps for 𝜃2 and the torque on a permanent magnetic moment. a) The angle 𝜃2 between the magnetic moment 𝑚⃗⃗⃗ 

and the external magnetic field 𝐵⃗⃗ as a function of the orientation of the nanoparticle 𝜃𝑁𝑃 and the magnetic field |𝐵⃗⃗|. b) The torque as a 

function of the orientation of the nanoparticle 𝜃𝑁𝑃 and the magnetic field |𝐵⃗⃗|. 

S3.2 The torsional stiffness as a function of 𝑩 
In Figure S9, we focus on the torque and the stiffness. From the plot of the torque in 

Figure S8.b, we extract the torque as function of 𝜃𝑁𝑃 for different values of |𝐵⃗⃗| (Figure 

S9.a). The derivatives of these curves near 𝜃𝑁𝑃 = 0, give the stiffness for different values 

of |𝐵⃗⃗|, as plotted in Figure S9.b. The torsional stiffness should equal 𝜅𝜃 = 𝑚0𝐵 and 

therefore be linear in the field |𝐵⃗⃗|. 

 
Figure S9 The torsional stiffness at different values of the magnetic field |𝐵⃗⃗|. a) The torque dependence on 𝜃𝑁𝑃 for different 

values of |𝐵⃗⃗| indicated by the different colours and the legend. b) The stiffness dependence on |𝐵⃗⃗|. The blue dots are the data obtained 

via Figure S9.a and the red line is a co-plot of 𝜅𝜃 = 𝑚0𝐵 with 𝑚0 = 1. 

S3.3 Mapping single nanoparticle behaviour to whole bead behaviour 
When this model was proposed for superparamagnetic beads [8], the authors assumed a 

single permanent moment for the whole bead, which is equivalent to simply multiplying 

the moment of a single nanoparticle by the “effective” number of nanoparticles 𝑁𝑁𝑃 

contributing to the torque. 
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S4 Simulation of the torque on a nanoparticle with a rectangular 
hysteresis curve 
As a reference point for comparison to Figure S1 and Figure S3, here we provide the 

equivalent figures for a nanoparticle with a rectangular hysteresis curve. 

S4.1 The torque as a function of 𝑩 and 𝜽𝑵𝑷 
In this model, the nanoparticle has a rectangular hysteresis curve (Figure S10) 

irrespective of its angular orientation. The magnetic dipole moment only strictly exists in 

the two states aligned with the anisotropy axis. Flipping between the two states requires a 

component of the external magnetic field along the anisotropy axis which is larger than 

the coercive field |𝐵⃗⃗coercive|. Below the coercive field, the bead acts as though it has a 

permanent magnetic moment. 

 

 
Figure S10 Rectangular hysteresis curve. The magnetization along the anisotropy axis is plotted as a function of the magnetic 

field along the anisotropy axis. The magnetization is normalized by the saturation magnetization 𝑀𝑠𝑎𝑡 and the magnetic field is 

normalized by the coercive field 𝐵coercive. Flipping of the magnetization between the two states aligned with the anisotropy axis occurs 

at |𝐵 𝐵coercive⁄ | = 1. 

In the simulations, we start with the nanoparticle aligned with the field, so 𝜃𝑁𝑃 = 0. Then 

we keep the field 𝐵⃗⃗ constant, so 𝐵 𝐵coercive⁄  is constant, and rotate the nanoparticle over 

2π. At each angle 𝜃𝑁𝑃, we determine the angle 𝜃2 of the magnetic moment 𝑚⃗⃗⃗. Once we 

obtained 𝜃2, we calculate the torque. The results of the numerical simulations are shown 

in Figure S11. The graphs should be read from bottom to top, i.e. from 𝜃𝑁𝑃 = 0 to 

𝜃𝑁𝑃 = 2𝜋, because of hysteresis effects. 
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Figure S11 Heat maps for 𝜃2 and the torque on a nanoparticle with a rectangular hysteresis curve. a) The angle 𝜃2 between the 

magnetic moment 𝑚⃗⃗⃗ and the external magnetic field 𝐵⃗⃗ as a function of the orientation of the nanoparticle 𝜃𝑁𝑃 and the magnetic field 

|𝐵⃗⃗|, or equivalently 𝐵 𝐵coercive⁄ . b) The torque as a function of the orientation of the nanoparticle 𝜃𝑁𝑃 and the magnetic field |𝐵⃗⃗|, or 

equivalently 𝐵 𝐵coercive⁄ . 

In the plots, we observe two regimes 𝐵 𝐵coercive⁄ < 1 and 𝐵 𝐵coercive⁄ > 1. In the first 

regime 𝐵 < 𝐵coercive, the magnetic dipole cannot flip between the two aligned states and 

hence it acts as a permanent dipole. The angle 𝜃2 = 𝜃𝑁𝑃 and the torque is 2π-periodic. In 

the second regime 𝐵 > 𝐵coercive, the magnetic dipole flips, when the component along the 

anisotropy axis is larger than 𝐵coercive. For 𝐵 𝐵coercive⁄  slightly larger than one, the 

magnetic dipole only flips near π, while for 𝐵 𝐵coercive⁄ ≫ 1, the dipole flips already just 

beyond π/2. The torque is π-periodic. 

S4.2 The torsional stiffness as a function of 𝑩 
In Figure S12, we focus on the torque and the torsional stiffness of a nanoparticle with 

rectangular hysteresis curve. From the plot of the torque in Figure S11.b, we extract the 

torque as function of 𝜃𝑁𝑃 for different values of 𝐵 𝐵coercive⁄  (Figure S12.a). The 

derivatives of these curves near 𝜃𝑁𝑃 = 0, give the torsional stiffness for different values 

of 𝐵 𝐵coercive⁄ , as plotted in Figure S12.b. Near 𝜃𝑁𝑃 = 0, the dipole will not flip, so it will 

act as a permanent moment. The torsional stiffness is therefore expected to be linear in 

the field |𝐵⃗⃗|, or equivalently linear in 𝐵 𝐵coercive⁄ . 

 
Figure S12 The torsional stiffness at different values of the magnetic field 𝐵. a) The torque dependence on 𝜃𝑁𝑃 for different 

values of 𝐵 𝐵coercive⁄  indicated by the different colours (see legend). b) The torsional stiffness dependence on 𝐵 𝐵coercive⁄ . The blue dots 

are the data obtained via Figure S12.a and the red line is a co-plot with slope one. 
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S4.3 Mapping single nanoparticle behaviour to bead behaviour 
When this model was proposed for superparamagnetic beads [9], the authors explicitly 

included a specific orientation distribution of the nanoparticles inside the bead. Deduction 

of the bead behaviour from the single nanoparticle behaviour is therefore less trivial than 

in S1-S3. Therefore we have simulated the bead behaviour for the current model 

(bacterial flagellar motor experiment in S4.3.3 and DNA experiment in S4.3.4), starting 

from our calculations of single nanoparticles (S4.3.1), using a forward Euler method 

(S4.3.2). 

S4.3.1 The magnetic torque 𝝉𝒎𝒂𝒈𝒏𝒆𝒕𝒔 on multiple nanoparticles 

In the current model (nanoparticles with the rectangular hysteresis curves), the magnetic 

torque is given by [9]: 

 

𝜏𝑚𝑎𝑔𝑛𝑒𝑡𝑠 = 𝐵 ∑ 𝜇𝑖 sin(𝜃𝑖 − 𝜃𝑓𝑖𝑒𝑙𝑑)

𝑁

𝑖=1

 S27 

where 𝐵 is the magnetic field, 𝑁 is the number of nanoparticles, 𝜇𝑖 is the magnitude of 

the magnetic moment of the ith nanoparticle, 𝜃𝑖 is the orientation of the magnetic 

moment of the ith nanoparticle, and 𝜃𝑓𝑖𝑒𝑙𝑑 is orientation of the field. The magnetic 

moments are assumed to have equal magnitude and to be equally spaced over an angular 

range less than 180°. In this model, the orientation of the magnetic moment of each 

nanoparticle 𝜃𝑖 can flip by 180°, if the coercive field is overcome. So at each time step of 

the simulation, we check for each nanoparticle whether the component of the magnetic 

field along the anisotropy axis is parallel or antiparallel to the magnetic moment of the 

nanoparticle, and, if it is antiparallel, whether it is larger than the coercive field. If the 

component is larger than the coercive field, the magnetic moment flips and we add 180° 

to 𝜃𝑖. This is further explained in Figure S13. 

 

 
Figure S13 Example of the model with coercive field induced flipping with 𝑁 = 7, Δ𝜃 = 20° and 𝜃𝑓𝑖𝑒𝑙𝑑 = 0°. a) The external 

magnetic field (red) is off and the magnetic moments (green) of the nanoparticles do not flip thermally. Going from b to e, the particle 

is rotated in the counter clockwise direction. b) The net magnetic moment is aligned with the magnetic field. c) The bead is rotated 

and the external magnetic field is now opposing the magnetic moment of one of the nanoparticles. However, the component of the 

magnetic field along the anisotropy axis of this nanoparticle, is less than the coercive field, so the magnetic moment does not flip. d) 

Further rotation of the bead with respect to the external field increases the magnetic field component opposing the magnetic moment 

of the nanoparticle. At this point the opposing field is larger than the coercive field, so the moment flips over 180°. e) Further rotation 

of the bead will cause the other magnetic moment to flip as well. 

For the simulations we use 22 nanoparticles, each with magnetic moment 𝜇 = 1.1 ∙
10−17 𝐴𝑚2, and equally spread over 126°, so Δ𝜃 = 6° [9]. 

S4.3.2 Explanation of the numerical approach of simulation 
The equation of motion for a superparamagnetic bead in our experiments is given by: 

 𝜏𝑖𝑛𝑒𝑟𝑡𝑖𝑎 = 𝜏𝑑𝑟𝑎𝑔 + 𝜏𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 + 𝜏𝑡ℎ𝑒𝑟𝑚𝑎𝑙 S28 
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where the different terms describe the torques due to inertia, due to hydrodynamic drag, 

due to external factors, such as an external magnetic field, and due to thermal 

fluctuations, respectively. 

 

The torque due to Brownian fluctuations, 𝜏𝑡ℎ𝑒𝑟𝑚𝑎𝑙, is given by: 

 𝜏𝑡ℎ𝑒𝑟𝑚𝑎𝑙 = 𝑟𝑛√2𝑘𝐵𝑇𝛾 Δ𝑡⁄  S29 

where 𝑟𝑛 is a random number drawn from a Gaussian distribution with 𝜇 = 0 and 𝜎 = 1, 

𝑘𝐵 is the Boltzmann constant, 𝑇 is the temperature, and Δ𝑡 is the time step of the 

simulation. 

 

The value of 𝜏𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 depends on the experiment we are trying to simulate. For the 

bacterial flagellar motor experiments, the external torque is given by 𝜏𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 =
𝜏𝑚𝑎𝑔𝑛𝑒𝑡𝑠 + 𝜏𝑚𝑜𝑡𝑜𝑟, where 𝜏𝑚𝑎𝑔𝑛𝑒𝑡𝑠 is the torque on the bead due to the magnetic field of 

the magnets (Equation S27), and 𝜏𝑚𝑜𝑡𝑜𝑟 is the torque on the bead due to the bacterial 

flagellar motor. For the DNA experiments, the external torque is given by 𝜏𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 =
𝜏𝑚𝑎𝑔𝑛𝑒𝑡𝑠 + 𝜏𝐷𝑁𝐴, where 𝜏𝐷𝑁𝐴 is the torque on the bead that results from the intrinsic 

torsional stiffness of the DNA molecule. Since the torsional stiffness of the DNA 

molecule [10,11] is orders of magnitude smaller than the torsional stiffness of the 

magnetic trap, we may also neglect 𝜏𝐷𝑁𝐴. 

 

Neglecting the inertial torque and using 𝜏𝑑𝑟𝑎𝑔 = −𝛾 𝑑𝜃 𝑑𝑡⁄ , the equation of motion can 

now be rewritten: 

 
𝛾

𝑑𝜃

𝑑𝑡
= 𝜏𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 + 𝜏𝑡ℎ𝑒𝑟𝑚𝑎𝑙 S30 

 
𝛾

𝜃(𝑡 + Δ𝑡) − 𝜃(𝑡)

Δ𝑡
= 𝜏𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 + 𝜏𝑡ℎ𝑒𝑟𝑚𝑎𝑙 S31 

 
𝜃(𝑡 + Δ𝑡) = 𝜃(𝑡) + (

𝜏𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 + 𝜏𝑡ℎ𝑒𝑟𝑚𝑎𝑙

𝛾
) Δ𝑡 S32 

We use this equation to perform the simulations. 

S4.3.3 Bacterial flagellar motor experiment 
In the bacterial flagellar motor experiments, the motor actively rotates the bead inside the 

magnetic field and essentially provides a full scan of the magnetic potential. The 

periodicity of the potential will give a very clear distinction among the models or regimes 

of the models. The details of the angular distributions could then even allow us to 

distinguish between models/regimes of models with the same periodicity. 

 

Most terms in Equation S32 have been discussed, i.e. 𝜏𝑒𝑥𝑡𝑒𝑟𝑛𝑎𝑙 and 𝜏𝑡ℎ𝑒𝑟𝑚𝑎𝑙, but not the 

drag coefficient 𝛾. For the bacterial flagellar motor experiments, we will assume the bead 

is spun around by the motor on a circle. The drag coefficient is then expressed as: 

 𝛾 = 𝛾𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 + 𝛾𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙 ∙ 𝑅𝑐𝑖𝑟𝑐𝑙𝑒
2  S33 

 

 𝛾 = 8𝜋𝜂𝑅𝑏𝑒𝑎𝑑
3 + 6𝜋𝜂𝑅𝑏𝑒𝑎𝑑𝑅𝑐𝑖𝑟𝑐𝑙𝑒

2  S34 
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Here we neglect hydrodynamic surface effects. For the bacterial flagellar motor 

experiments, we used 𝜂 = 10−3 𝑃𝑎 ∙ 𝑠, 𝑅𝑏𝑒𝑎𝑑 = 1.05 𝜇𝑚/2 and 𝑅𝑐𝑖𝑟𝑐𝑙𝑒 = 250 𝑛𝑚, 

resulting in a value for the drag coefficient 𝛾 ≈ 4.3 𝑝𝑁 ∙ 𝑛𝑚 ∙ 𝑠.  

 

The graph shows a π-periodicity. 

 

 
Figure S14 Angular trace and histogram predicted by the model. In the simulations Δ𝑡 = 25 𝜇𝑠, total time is 25 s, 𝜏𝑚𝑜𝑡𝑜𝑟 =

1000 𝑝𝑁 ∙ 𝑛𝑚 and 𝐵 = 10 𝑚𝑇. The dashed lines represent 45° and 225°. Simulation in which 𝜏𝑚𝑎𝑔𝑛𝑒𝑡𝑠 is calculated from Equation 

S27 with coercive field 𝐵coercive = 2 𝑚𝑇, 𝑁𝑁𝑃 = 22 and the nanoparticles are evenly spread from -63° to 63° in steps of Δ𝜃 = 6°. The 

magnetic moments of the nanoparticles was set to 𝜇 = 1.1 ∙ 10−17 𝐴𝑚2 per nanoparticle to obtain an average rotation speed of the 

motor of about +5 Hz. 

S4.3.4 Angular thermal fluctuations experiment 𝝉𝒆𝒙𝒕𝒆𝒓𝒏𝒂𝒍 = 𝝉𝒎𝒂𝒈𝒏𝒆𝒕𝒔 

In the DNA experiments, the drag coefficient differs from that in the flagellar motor 

experiments. To compute its value, we first assume that the magnetic bead rotates on 

axis. Second, the magnetic bead has a fiducial marker bead attached to it, which we 

assume to rotate on a circle with 𝑅𝑐𝑖𝑟𝑐𝑙𝑒 = 𝑅𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐 𝑏𝑒𝑎𝑑 + 𝑅𝑓𝑖𝑑𝑢𝑐𝑖𝑎𝑙 𝑚𝑎𝑟𝑘𝑒𝑟. The drag 

coefficient is then expressed as: 

 𝛾 = 𝛾𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙
𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐 𝑏𝑒𝑎𝑑

+ 𝛾𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙
𝑓𝑖𝑑𝑢𝑐𝑖𝑎𝑙 𝑚𝑎𝑟𝑘𝑒𝑟

+ 𝛾𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙
𝑓𝑖𝑑𝑢𝑐𝑖𝑎𝑙 𝑚𝑎𝑟𝑘𝑒𝑟
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 𝛾 = 8𝜋𝜂𝑅𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐 𝑏𝑒𝑎𝑑
3 + 8𝜋𝜂𝑅𝑓𝑖𝑑𝑢𝑐𝑖𝑎𝑙 𝑚𝑎𝑟𝑘𝑒𝑟

3 + 6𝜋𝜂𝑅𝑓𝑖𝑑𝑢𝑐𝑖𝑎𝑙 𝑚𝑎𝑟𝑘𝑒𝑟𝑅𝑐𝑖𝑟𝑐𝑙𝑒
2  S36 

 

Here we neglect hydrodynamic effects due to the proximity of the surface. For the DNA 

experiments with MyOne beads, we use the dynamic viscosity 𝜂 = 10−3 𝑃𝑎 ∙ 𝑠, 

𝑅𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐 𝑏𝑒𝑎𝑑 = 1.05 𝜇𝑚/2, and 𝑅𝑓𝑖𝑑𝑢𝑐𝑖𝑎𝑙 𝑚𝑎𝑟𝑘𝑒𝑟 = 450 𝑛𝑚/2. We determine a value 

for the drag coefficient 𝛾 ≈ 6.3 𝑝𝑁 ∙ 𝑛𝑚 ∙ 𝑠.  

 
Figure S15 Torsional stiffness 𝜅𝜃 versus magnetic field 𝐵 on a log-log scale. In the simulations Δ𝑡 = 1 𝜇𝑠 and the total 

simulated time was 50 s for each value of the field. Model with coercive field induced flipping. The parameters used are the coercive 

field 𝐵coercive = 2 𝑚𝑇, 𝑁𝑁𝑃 = 22, and the nanoparticles are evenly spread from -63° to 63° in steps of Δ𝜃 = 6°. The magnetic 

moments of the nanoparticles is set to 𝜇 = 1.1 ∙ 10−17 𝐴𝑚2. The red line is 𝜅𝜃 = 𝑚𝑛𝑒𝑡𝐵 where 𝑚𝑛𝑒𝑡 is the net magnetic moment of all 

nanoparticles provided that they do not flip. 
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The result of the simulations is shown in Figure S15. When the angular fluctuations of 

the bead are sufficiently small, such that the component of the external field along the 

anisotropy axes of the nanoparticles remains in the same direction as the dipole moments 

of the nanoparticles, the dipole moments will not flip. Therefore the bead will act as 

though it has a permanent moment. The red line in Figure S15 represents 𝜅𝜃 = 𝑚𝑛𝑒𝑡𝐵, 

where  

 

𝑚𝑛𝑒𝑡 = 𝜇 ∑ cos 𝜃𝑖

𝑁

𝑖=1

 S37 

where 𝜇 is the magnitude of the magnetic moment of a nanoparticle, 𝑖 runs from 1 to 22 

and 𝜃𝑖 runs from -63° to 63° in steps of Δ𝜃 = 6°. We find 𝑚𝑛𝑒𝑡 = 1.9 ∙ 10−16 𝐴𝑚2. 

S5 Improvements to the proposed theoretical models 
We have discussed and quantitatively evaluated several models for the torque on 

superparamagnetic beads; these models are still idealizations and include a number of 

simplifications. A more complete model could involve a size distribution of the magnetic 

nanoparticles. This size distribution will result in a distribution of values of 𝐾 = 1

2
𝐶𝑉 and 

𝑚 = 𝑀𝑉, but also in a distribution in Néel relaxation times [7], which will probably give 

a range of nanoparticle properties going from very paramagnetic to very ferromagnetic on 

the time scale of the measurement. In addition, there might be a distribution in anisotropy 

constants independent of the volume, but perhaps more dependent on the source of 

anisotropy. The orientation distribution of the nanoparticles was already taken into 

account, but could be made more continuous.  

Nonetheless, we find that our current data are well described by the simplified model 

with superparamagnetic nanoparticles of uniform size. As more data become available, it 

might become possible to quantitatively test and discriminate between extensions and 

refinements of our basic models.  

S6 Estimation of the magnetic content inside the beads 
The composition of MyOne beads has been thoroughly characterized [1]. In particular, 

the total bead density has been determined to bead = 1.7 g/cm
3
, with a Fe mass content of 

mFe,total/mbead = 255 mg/g [1]. Moreover, maghemite (Fe2O3) has been shown to be the 

predominant iron oxide phase of the nanoparticles [1]. With a density of maghemite of 

maghemite = 4.9 g/cm
3
, a density of the polystyrene matrix of polystyrene = 1.05 g/cm

3
, and a 

total volume of the bead of 𝑉𝑏𝑒𝑎𝑑 = 4

3
𝜋(

1.05

2
)

3
 𝜇𝑚3 [1], we can estimate the volume 

fraction of maghemite nanoparticles in the bead, Vmaghemite/Vbead, by setting beadVbead = 

maghemiteVmaghemite + polystyreneVpolystyrene (notice that Vpolystyrene = Vbead - Vmaghemite), yielding 

a volume fraction of Vmaghemite/Vbead = 17%. 

 

Another way of estimating the volume fraction of magnetic nanoparticles inside the beads 

is by calculating the mass ratio of maghemite in the beads, mmaghemite/mbead, as well as 

their density ratio maghemite/bead. The first is simply given by mmaghemite/mbead = 

mFe,total/mbead (2mFe +3mO)/(2mFe), where mFe is the mass of an iron atom and mO is the 
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mass of an oxygen atom. With V = /m we arrive at a volume fraction of Vmaghemite/Vbead = 

13%. 

 

Assuming spherical nanoparticles of 8 nm in diameter [1], these volume fractions 

correspond to having 3 ∙ 105 − 4 ∙ 105 nanoparticles per MyOne bead. 

S7 Torque due to magnetic dipole-dipole interactions 
We have found that the magnetic anisotropy of superparamagnetic nanoparticles and a net 

alignment of their anisotropy axes within the bead can explain the torsional stiffness, 

which we observe for the superparamagnetic beads in a magnetic field (see the fits to the 

experimental data in Figure 3f and 3g of the main text). In addition to the magnetic 

anisotropy of superparamagnetic nanoparticles (NPs), the dipole-dipole interactions 

between their magnetic moments are a possible origin for the torsional stiffness 

superparamagnetic beads experience in a magnetic field. NPs in the beads have been 

found to be partly present in clusters, with a cluster size typically in the 20 nm range [1]. 

Furthermore, Mössbauer spectra indicate that magnetic properties of iron oxide 

nanoparticles in Dynabeads are strongly influenced by interparticle interactions [1]. Here 

we determine whether dipole-dipole interactions between the magnetic moments of 

superparamagnetic nanoparticles can explain both magnitude and shape of the 

experimentally observed torsional stiffness. To this end, we assume the NPs to be present 

in clusters of two NPs, with a net alignment of the particle clusters. 

 

To derive an expression for the torque due to magnetic dipole-dipole interactions between 

NPs and a net orientation of NP clusters, we first have to find an expression for the free 

energy of one NP cluster. The relevant terms are the dipole-dipole interaction energy of a 

NP cluster composed of 𝑁𝑘 NPs and the magnetic energy to align the magnetic moment 

𝑚⃗⃗⃗ with the magnetic field 𝐵⃗⃗: 

 
𝑈𝑁𝑘

=
𝜇0𝜇S

4𝜋

(𝑀𝑉)2

𝑟𝑘
3  (1 − 3cos2𝜃1) − 𝑁𝑘𝐵𝑀𝑉cos(𝜃 − 𝜃1), S38 

where 𝑟𝑘 is the particle distance in the cluster given by  
1

𝑟𝑘
3  = ∑ ∑

1

𝑟𝑖𝑗
3

𝑁𝑘
𝑗=𝑖+1

𝑁𝑘−1
𝑖=1  (𝑟𝑖𝑗 is the 

distance between particle i and j), 𝑉 the NP volume, M the NP magnetization, and B the 

magnetic field strength. 𝜃1 is the angle between the magnetic moment and the anisotropy 

axis and 𝜃 the angle between the magnetic field and the anisotropy axis, as shown in 

Figure S16.a. 

 

If we assume that all 𝑁𝐶𝑙 NP clusters in the bead are aligned with their anisotropy axes 

pointing in the same direction (we therefore consider effective values for the 

magnetization), the total energy of the magnetic bead writes 

 𝑈tot = 𝑁Cl𝑈𝑁𝑘
. S39 

The equilibrium orientation of the magnetic moment 𝑚⃗⃗⃗,  𝜃1(𝑁𝑘 , 𝑟𝑘, 𝑉, 𝑀, 𝐵, 𝜃), is 

determined by setting 
∂Utot

∂𝜃1
= 0 (𝜃1 is assumed to be small). We then arrive at an 

expression for the torque 𝛤𝑚𝑎𝑔 = −
𝜕𝑈tot

𝜕𝜃
 which, assuming small 𝜃, can be written similar 

to Equation 3 (main text), namely 



 
25 

 
𝛤mag = −𝑁Cl𝑁k𝑉

𝐶′(𝑀)𝐵𝑀

(𝐶′(𝑀) + 𝐵𝑀)
𝜃 = −𝜅θ 𝜃, S40 

with 𝐶′(𝑀(𝐵)) =
𝜇0𝜇S

4𝜋

6

𝑁𝑘

𝑀(𝐵)2𝑉

𝑟𝑘
3 . 

In contrast to the model considering magnetic NP anisotropy (Equation 3 of the main 

text), now 𝐶 is not a material constant, but rather a function of the cluster size (i.e. the 

number of NPs composing the cluster), the distance between particles in the cluster, and 

the magnetization.  

 

To achieve a good fit of this model to the experimental data, the shape of the 

magnetization curve turned out to be critical. Not necessarily all NPs in the bead 

contribute to the magnetic anisotropy, so the total magnetization M(B) consists of an 

isotropic and an anisotropic part, of which here only the anisotropic part is relevant. In 

particular, anisotropy leads to a smoother increase of the M(B) curve [12]. We therefore 

assumed M(B) to be of Langevin shape (𝑀(𝐵) = 𝑀𝑠𝑎𝑡(coth(𝐵 𝐵0⁄ ) − 𝐵0 𝐵⁄ )), where 

𝐵0 was a global fit parameter (and thus equal for all beads of the same bead type). The 

number of NP clusters in one bead, 𝑁𝐶𝑙, on the other hand, was a free fit parameter for 

each bead. The remaining parameters of Equation S40 were set to the following values: 

clusters were assumed to consist of two NPs (𝑁𝑘 = 2) and the distance between particles 

in the cluster was set to twice the average NP radius (i.e. 8 nm, meaning that the two NPs 

are stuck to each other). The volume V of a NP was assumed to be that of a sphere of 

8 nm in diameter, and 𝑀𝑠𝑎𝑡 was set to the values obtained by measurements of dried 

powder with a Vibrating Sample Magnetometer (namely 𝑀𝑠𝑎𝑡 = 43 𝑘𝐴/𝑚 (MyOne) and 

𝑀𝑠𝑎𝑡 = 28 𝑘𝐴/𝑚 (M270)) [6].  

 

Figure S16 a) Schematic illustrating magnetic dipole-dipole interactions in a nanoparticle cluster. b) Torsional stiffness 

measured (open circles) for two types of superparamagnetic beads (M270 beads, left panel, and MyOne beads, right panel), fitted by 
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the model considering dipole-dipole interactions between the magnetic moments of superparamagnetic nanoparticles (solid line). For 

comparison, the fit with the model taking into account the magnetic anisotropy of superparamagnetic nanoparticles is also shown 

(dashed line). c) Comparison of the magnetization curves obtained by measurements of dried bead powder with a Vibrating Sample 

Magnetometer, which contains both isotropic and anisotropic contributions, and the magnetization curve yielding the best fit of the 

dipole-dipole interaction model to the torsional stiffness data, which represents the anisotropic part of the magnetization. 

The dipolar interaction model yields a good fit to the torsional stiffness data we obtained 

for two different types of superparamagnetic beads (namely M270 beads and MyOne 

beads, both from Dynabeads®) (Figure S16.b, same experimental data as shown in 

Figure 3f and Figure 3g of the main text). The fits yield 𝐵0 = 23 mT (MyOne beads, 

𝜒red
2 = 1.8) and 𝐵0 = 28 𝑚𝑇 (M270 beads,

2
red = 3.2), which corresponds to a more 

gradual increase of the magnetization with the magnetic field compared with the 

magnetization curve obtained by measurements of dried bead powder with a Vibrating 

Sample Magnetometer (B0 = 12 mT (MyOne) and B0 = 16 mT (M270)) [6] (Figure 

S16.c). The total number of NP dimers, 𝑁𝐶𝑙, were determined from the fits to 3 to 8∙10
4
 

(MyOne), which is less than half of the total estimated number of NPs included in these 

beads (see section S7), and 0.5 to 3.2∙10
6
 (M270). Consequently, dipolar interactions of 

superparamagnetic NPs in the beads can account for the order of magnitude of the 

experimentally observed torque.  

 

In conclusion, both the magnetic anisotropy of superparamagnetic nanoparticles and the 

dipole-dipole interactions between their magnetic moments can explain the torsional 

stiffness observed for superparamagnetic beads in a magnetic field. In fact, both may 

yield significant contributions to the torsional stiffness. As for a prediction of torque and 

its dependence on the magnetic field, either model can serve to estimate the curve shape 

for any bead type of similar characteristics (i.e. containing NPs with similar magnetic 

properties and a similar distribution in a non-magnetic matrix). 

S8 Experimentally determined stable trapping positions 
In the main text, we used a magnetic bead attached to a bacterial flagellar motor to scan 

the magnetic potential. Here, we employ an alternative approach to determine the 

periodicity of the magnetic potential. In this approach, we do not scan the full potential, 

but instead we locate the minima in the potential, as stable trapping positions. 

 

In this experiment, we start with the magnets far from the sample plane, so that the 

flagellar motor can freely rotate the magnetic bead. Then we increase the external field 

strength rapidly by moving the magnets close to the sample plane, such that the motor 

stalls. Subsequently, we move the magnets away from the sample plane and repeat the 

cycle. Several such “rotate and stall” cycles were carried out for different magnet 

orientations (Figure S17). 
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Figure S17 Stall positions of the bacterial flagellar motor at different magnet orientations. a) Angle as a function of time. Only 

the bead positions with the magnets close to the sample plane are shown, so each cluster of data points is a stall event in the “rotate 

and stall” cycle. The bead positions during magnet movement and magnet far away from the sample plane are omitted. The different 

colours indicate different magnet orientations. b) Histogram of the data in (a). 

As the magnets approach the sample plane, the magnetic bead becomes trapped in a local 

potential well of the magnetic potential. The fact that we consistently observe two stable 

trapping positions, which are separated by 0.50±0.05 turns, suggests again that the 

magnetic potential is 𝜋-periodic. When we bring the magnets very close to the sample 

plane, higher fields than in the assay described in the main text are imposed, which 

explains the small angular fluctuations at the stall positions of the motor. 

S9 Measurement of the standard deviation versus magnet distance 

 
Figure S18 The standard deviation in the angular thermal fluctuations as a function of magnet height above the sample plane. a) 

MyOne. Colour coding is the same as in the main text. b) M270. Colour coding is the same as in the main text. 
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From these two plots, we converted the magnet height to magnetic field using a 

calibrated conversion table and the standard deviation to stiffness by means of the 

equipartition theorem to obtain Figure 3f and Figure 3g of the main text. 

S10 Magnetization 
For the model with the superparamagnetic nanoparticles, the magnetization |𝑀⃗⃗⃗| in 

Equation 3 of the main text is dependent on the magnetic field |𝐵⃗⃗|. We approximate the 

magnetization |𝑀⃗⃗⃗| by a Langevin function (Equation S23) as fitted to vendor supplied 

data. For the volume magnetization of MyOne beads, we use 𝑀𝑠𝑎𝑡 = 43.3 𝑘𝐴/𝑚 and 

𝐵0 = 12 𝑚𝑇 [6]. For the magnetization of M270 beads, we use 𝑀𝑠𝑎𝑡 = 27.9 𝑘𝐴/𝑚 and 

𝐵0 = 15.5 𝑚𝑇 [13]. 

S11 Minimizing the effects of the camera integration time 
The thermal angular fluctuations of the magnetic bead are used to calculate the torsional 

stiffness experienced by the bead in the magnetic field by means of the equipartition 

theorem: 𝜅𝜃 = 𝑘𝐵𝑇 〈𝜃2〉⁄ . Due to a finite integration time/exposure time of the camera, 

the angular fluctuations are averaged. The angular fluctuations 〈𝜃2〉 will then be 

underestimated, and hence the torsional stiffness 𝜅𝜃 will be overestimated. Reducing the 

exposure time reduces this averaging effect or blurring. 

 

Motion blurring occurs because of motion during the acquisition of a single image. As 

the bead moves, its motion is averaged over one exposure time, hence the image is 

blurred [14]. The degree of blurring depends on the ratio between the exposure time 

𝜏𝑒𝑥𝑝𝑜 and the characteristic time 𝜏𝑐 of the bead, 𝛼 =  𝜏𝑒𝑥𝑝𝑜  𝜏𝑐⁄ , where the characteristic 

time is defined as 𝜏𝑐 = 𝛾𝜃 𝜅𝜃⁄  with the rotational drag coefficient of the bead 𝛾𝜃 

(Equation S36) and the torsional trap stiffness 𝜅𝜃. The effect of blurring is that the 

measured fluctuations 〈𝜃2〉𝑚𝑒𝑎𝑠 are different from the actual fluctuations 〈𝜃2〉. The 

measured fluctuations are given by  [15]. The measured variance approximates the actual 

variance best, if the exposure time 𝜏𝑒𝑥𝑝𝑜 is much shorter than the characteristic time 𝜏𝑐.  

 

For our measurements of the torsional stiffness, we can estimate the rotational drag 

coefficients for MyOne and M270 beads based on Equation S36 and then estimate the 

characteristic time using the measured torsional stiffness. The rotational drag coefficient 

for MyOne beads we estimate to be 𝛾 ≈ 6.3 𝑝𝑁 ∙ 𝑛𝑚 ∙ 𝑠 and for M270 beads 𝛾 ≈
106 𝑝𝑁 ∙ 𝑛𝑚 ∙ 𝑠. These values are probably lower limits, since the drag will increase, if 

the beads do not rotate exactly on-axis. The saturation stiffness for MyOne is 𝜅𝜃,max =
9.5 𝑝𝑁 ∙ 𝜇𝑚/𝑟𝑎𝑑 and for M270 𝜅𝜃,max = 133 𝑝𝑁 ∙ 𝜇𝑚/𝑟𝑎𝑑 (see main text). The 

characteristic times are then 𝜏𝑐 ≈ 660 𝜇𝑠 and 𝜏𝑐 ≈ 800 𝜇𝑠 for MyOne and M270, 

respectively. In order to have a <10% deviation from the actual value, the exposure time 

𝜏𝑒𝑥𝑝𝑜 needs to be at least three times smaller than the characteristic time 𝜏𝑐. In our 

experiments, we use an exposure time of 𝜏𝑒𝑥𝑝𝑜 = 200 𝜇𝑠 in order to approximate the 

actual variance reasonably well. We note that the sampling interval can be much larger 
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than the exposure time and that the total measurement time should be sufficiently large 

for the bead to explore the full magnetic potential. 
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