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Quantifying the Precision of Single-Molecule Torque
and Twist Measurements Using Allan Variance
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1Department of Bionanoscience, Kavli Institute of Nanoscience, Delft University of Technology, Delft, the Netherlands and 2Department of
Physics, Nanosystems Initiative Munich, and Center for Nanoscience, LMU Munich, Munich, Germany
ABSTRACT Single-molecule manipulation techniques have provided unprecedented insights into the structure, function, inter-
actions, and mechanical properties of biological macromolecules. Recently, the single-molecule toolbox has been expanded by
techniques that enable measurements of rotation and torque, such as the optical torque wrench (OTW) and several different
implementations of magnetic (torque) tweezers. Although systematic analyses of the position and force precision of single-mole-
cule techniques have attracted considerable attention, their angle and torque precision have been treated in much less detail.
Here, we propose Allan deviation as a tool to systematically quantitate angle and torque precision in single-molecule measure-
ments. We apply the Allan variance method to experimental data from our implementations of (electro)magnetic torque tweezers
and an OTW and find that both approaches can achieve a torque precision better than 1 pN $ nm. The OTW, capable of
measuring torque on (sub)millisecond timescales, provides the best torque precision for measurement times(10 s, after which
drift becomes a limiting factor. For longer measurement times, magnetic torque tweezers with their superior stability provide the
best torque precision. Use of the Allan deviation enables critical assessments of the torque precision as a function of measure-
ment time across different measurement modalities and provides a tool to optimize measurement protocols for a given instru-
ment and application.
INTRODUCTION
Techniques to manipulate single-molecule have enabled
studies of the structure, function, interactions, and mechan-
ical properties of biological macromolecules at unprece-
dented detail (1–7). Many single-molecule manipulation
techniques, notably optical tweezers and atomic force
microscopy, naturally operate in the space of (linear) exten-
sion and force. However, biological macromolecules are
frequently subject to torsional strain, and the molecular mo-
tors that translocate along them must be able to progress
amid accumulated twist and torque. To quantify these phe-
nomena, a number of techniques that enable measurements
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of rotation angle and torque (8,9) have been developed
recently. Examples of such techniques (reviewed in (9))
include the rotor-bead-tracking assay (10–15), optical tor-
que tweezers (16–28), and various extensions of magnetic
tweezers comprising magnetic torque tweezers (29–32),
freely orbiting magnetic tweezers (33,34), and electromag-
netic torque tweezers (35). Similar to the field of force spec-
troscopy that has benefited from systematic analyses of the
position and force precision of single-molecule techniques
(36–44), torque- and twist-measuring techniques would be
enriched by a better understanding of the achievable preci-
sion in angular detection and the determination of torque.

Here, we propose Allan deviation (AD) (38–49) as a crite-
rion to systematically quantitate the angle and torqueprecision
in single-molecule measurements. The AD allows us to criti-
cally assess the torque precision as a function of measurement
time across different measurement modalities (e.g., magnetic
versus optical torque tweezers) that rely on distinct physical
principles. Being a real space quantity and having the same
units as the observable of interest, it provides an intuitive
and direct way to quantify and interpret precision (38–44).
In addition to enabling direct quantitative comparisons of
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Quantifying Torque and Twist Precision
different torque and twist measurement strategies, use of the
AD in a systematic way provides an experimental user with
a very convenient tool with which to optimize the measure-
ment protocol for a given instrument and system. Here, we
investigate the ADmethod using simulated traces and demon-
strate its application to various implementations of magnetic
torque tweezers (MTT), electromagnetic torque tweezers
(eMTT), and an optical torque wrench (OTW). Using the
AD analysis, we arrive at clear recommendations, e.g., for
the optimal in-plane magnetic field strength in the eMTT
and for choosing an optimal trapping laser power in the OTW.
MATERIALS AND METHODS

Definition and properties of AD

Given a time series of N observations of some quantity q recorded at a sam-

pling frequency fs over a total measurement time tmeas ¼ N=fs, the Allan

variance (AV) of q for the time interval t is defined as follows (42,43,45):

s2
qðtÞ ¼ 1

2

D�
qiþ1 � qi

�2E
; (1)

where qi is the mean of the ith measurement interval of length t. The angle

bracket h.i denotes the arithmetic mean over all measurement intervals. In

other words, the AV is one-half of the averaged square distance between the

means of neighboring intervals. From its definition, the value of the AV is

always greater than zero; it can only be computed for time intervals

t%tmeas=2; it is additive for independent signals, i.e., the AV is the sum of

the individualAVs; and it is linear, i.e., a linear scaling of q, q
0 ¼ a$q, will sim-

ply scale the AV as follows: s2
q0 ðtÞ ¼ a2$s2qðtÞ. The property of linearity is

convenient because it allows for analysis of uncalibrated signals with the AV

(e.g., one can analyze the voltage signal from a quadrant photodiode, posi-

tion-sensing detector, or photodiodewithout having to first convert to position

or torqueunits). In addition, the linearity enables simple conversion fromangle

to torque signal (bymultiplication with the rotational trap stiffness, kq, in units

of pN $ nm/rad) beforeor after evaluationof theAV.AD isdefined as the square

root of theAV:sqðtÞ ¼ ðs2qÞ1=2. BecauseADhas the sameunits as the quantity

under investigation, it may be more intuitive to report ADs rather than AVs.
Computation of the AV

In practice, the AV is estimated from a data set with a finite number of mea-

surements using a discrete form of Eq. 1. In the simple form of the AV, the

data are split inM bins ofm data points each, and the value of each bin is the

mean over its m data points. The mean-square difference of consecutive

bins estimates the AV:

s2
qðmtsÞ ¼ 1

2ðM � 1Þ
XM�1

i¼ 1

�
qiþ1 � qi

�2
; (2)

where ts is the sampling period and qi is the mean of the ith bin of length

mts. The sampling period is taken to equal the integration time. For cam-

era-based detection in the magnetic tweezers, this assumes no dead time be-

tween frames, which is justified given the typical dead time (�10 ms)

relative to the integration time (�10 ms). For photodiode-based detection

in the OTW, the situation is quite different; whereas the effective integration

time is very fast (�10 ns), the photodiode is only read out at�100 kHz. The

inverse of this rate (�10 ms) is analogous to a dead time, as no signal aver-

aging occurs. Thus, in the OTW, the dead time far exceeds the integration

time. However, the application of Eq. 2 remains valid in all situations
considered in this work because the sampling period is much shorter than

the characteristic time of the system (Supporting Materials and Methods,

Section 1). For each value of m, m frameshifts exist to compute the AV

(Fig. 1 A). The use of all of these frameshifts improves the estimate of

the AV and is known as the ‘‘overlapping’’ AV (Eq. S3 in Supporting

Materials and Methods, Section 2).

Whereas the AV is defined for all values of m (up to the maximum m ¼
N=2), the AVs for successive values of m are not independent and can be

nearly identical because most values in a bin of size m are identical to

the values in a bin of size mþ 1. For fitting of the AV data, it is therefore

advantageous to calculate the octave-sampled AV by choosing m ¼ 2integer ,

which ensures nearly independent differences (46,47). We compute the AV

(39) using a publicly available MATLAB (The MathWorks, Natick, MA)

function (49). All AV curves are fit using maximum likelihood estimation

with the shape factor by Lansdorp and Saleh (47) (Eq. S4 in Supporting Ma-

terials and Methods, Section 3).
Analytic expression for the AV of a Brownian
particle in a harmonic trap

We employ the analytical expression given by Lansdorp and Saleh (47,48)

for the AVof a particle undergoing Brownian motion in a harmonic well and

apply it to the case of rotational motion, as follows:

s2
q ¼ A

�tc
t

�2
�
2
t

tc
þ 4 exp

�
� t

tc

�
� exp

�
�2

t

tc

�
� 3

�
;

(3)

where A ¼ kBT=kq and tc ¼ gq=kq. Here, gq is the rotational-friction coef-

ficient and kq is the trap stiffness of the rotational trap. Note that

kBT=kq ¼ VarðqÞ according to the equipartition theorem. We determine

the friction coefficient gq and the trap stiffness kq by fitting the expression

(Eq. 3) to our data using a maximum likelihood estimation algorithm (47).

In the short time averaging limit, where diffusion is dominant, the AV re-

duces to the following:

s2
q ¼ 2

3
Dt; (4)

where D is the diffusion constant, which, according to the Einstein-Smolu-

chowski relation, equals kBT=gq.

In most single-molecule experiments, the short time regime provides lit-

tle information about the system under study because the particle can barely

respond to changes on these timescales, particularly for often relatively

slow torque measurements. For long averaging times, the AV reaches the

so-called thermal limit, where it reduces to the following:

s2
q ¼ 2 A

tc
t

¼ 2
VarðqÞ

n
¼ 2kBTgq

k2qt
; (5)

where n ¼ t=tc defines the number of independent observations. The aver-

aging reduces the variance with the number of independent measurements

n, and therefore, the AV decreases in a manner that is inversely proportional

to t, improving the angle precision. In between these two limits, the AV

peaks at tmax , with the best estimate of tmax ðz1:8926tcÞ coming from

the numerical solution of Eq. 3 as opposed to the analytical solution

ð¼ ffiffiffi
3

p
tcÞ of Eqs. 4 and 5.

Equations 3, 4, and 5 can be converted from angle to torqueAVby straight-

forward application of the property of linearity; in the harmonic approxima-

tion, torque G is proportional to angle q ðG ¼ � kq$qÞ, and hence, s2G ¼
k2q$s

2
q . Thus, the thermal limit of the torque AV is given by the following:

s2
G ¼ 2kBTgq

t
: (6)
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In this limit, the AV for torque is independent of the trap stiffness kq, sug-

gesting that stiffness has no effect on the torque precision in the regime in

which the measurement precision is limited by thermal fluctuations (32).
Stochastic simulations of rotational motion

To test our AD analysis and to illustrate the effects of various system param-

eters, we simulate stochastic time traces of rotational motion using numer-

ical solutions to the corresponding overdamped Langevin equation (Fig. 1).

To simulate the rotation angle as a function of time qðtÞ, we discretize time

into time steps Dt. The angle at time step iþ 1, qiþ1, is given by the discre-

tized overdamped Langevin equation as the following:

qiþ1 ¼ qi þ
�
Gexternal þ Gthermal

gq

�
Dt; (7)

where the right-hand side only involves quantities known at time step i, gq

is the rotational friction coefficient (in units of pN $ nm $ s), Gexternal is the

external torque, and Gthermal ¼ Nð0; 1Þ$ð2kBTgq=DtÞ1=2 with thermal en-

ergy kBTz4:1 pN $ nm at room temperature and with Nð0; 1Þ being

Gaussian-distributed noise with zero mean and unit SD. The Langevin dy-

namics simulations were implemented using custom MATLAB routines

(Supporting Materials and Methods, Section 4).
AD measurements with magnetic tweezers

Torque application in magnetic tweezers relies on the alignment of super-

paramagnetic micron-sized beads or microspheres (referred to as ‘‘beads’’

from here on after) with an externally applied magnetic field (5,29,50).

Both MTTand eMTTemploy a predominantly vertical-oriented field gener-

ated by a cylindrical magnet and a smaller field in the horizontal direction

generated by a side magnet in the MTT (32) (Fig. 2 A) or by electromagnets

in the eMTT (35) (Fig. 3 A). The in-plane field generates a sufficiently weak

angular trap to perform experiments on soft molecules, like DNA. Torque

measurements in MTT and eMTT rely on tracking the rotational angle of

the bead and observing changes in the equilibrium angle position of the

bead inside the trap upon applying twist to a molecule of interest tethered

between a surface and the magnetic bead. The torque is determined from

the product of the angular shift and the trap stiffness, and hence, the angle

AD can be determined directly from the angular traces, whereas the torque

AD requires a calibrated trap stiffness. Limitations in angular tracking will

therefore also affect the torque precision.

Our MTT and eMTT measurements of the AD use custom-built instru-

ments described in detail elsewhere (32,35). In brief, they employ dou-

ble-stranded DNA constructs bound to a flow cell surface via multiple

digoxigenin-antidigoxigenin interactions and to superparamagnetic beads

via multiple biotin-streptavidin interactions in phosphate-buffered saline.

Bead sizes and DNA tether lengths are indicated in the main text and figure

legends.
AD measurements with optical tweezers

The OTW is an extension of conventional optical tweezers that exploits the

exchange of angular momentum between a nanofabricated, birefringent

particle and a polarized trapping beam to apply and measure torque

(16–28). Unlike the magnetic tweezers, which employ standard commer-

cially available magnetic beads (whose magnetic anisotropy governs the

achievable torque levels (50) and in which a choice of diameters permits

control over the drag coefficient), for the OTW no comparable particles

exist. Instead, one typically custom-fabricates birefringent dielectric parti-

cles using one of several fabrication routes (top-down, bottom-up, etc.), ma-

terials (quartz SiO2 (0.009), vaterite CaCO3 (0.1), calcite CaCO3 (–0.16),

rutile TiO2 (0.26); optical birefringences specified in parentheses), shapes
1972 Biophysical Journal 114, 1970–1979, April 24, 2018
(spherical, cylindrical, etc.), and dimensions (with a size scale of a few mi-

crometers being most prevalent) (23–28). In our custom-built instrument

(22), we use cylindrically shaped rutile TiO2 nanoparticles (diameter

�215 nm, height �765 nm) fabricated in our cleanroom facility (26).

In the OTW, the optical tweezers trap a birefringent cylinder with its long

axis aligned with the propagation direction of the light (Fig. 4 A). The linear

polarization of the trapping laser clamps the angular position of the rutile

TiO2 cylinder, and rotation of this polarization controls rotation of the par-

ticle about its long axis (26). The imbalance between left and right circu-

larly polarized components in the output of the trap provides a direct

measure for the exchange of angular momentum inside the trap and, hence,

a measure for the optical torque transferred to the particle. In the AD mea-

surements, we fixed the direction of the linear polarization and measured

the fluctuations around this equilibrium position (Figs. S8 A and S9 A).

The power of the trapping laser is tuned using a half-wave plate and a polar-

izing beam splitter, in the range of 10–80 mW at the laser focus.
RESULTS

The AD is the square root of the AV, which is a type of vari-
ance that uses samples averaged over variable time intervals
t and that is computed from the difference between neigh-
boring intervals (Materials and Methods). Although other
approaches to quantifying precision exist (e.g., other vari-
ances, autocorrelation, or power spectrum analyses (Sup-
porting Materials and Methods, Sections 5 and 6)), we
find AD to be a particularly convenient measure for several
reasons: 1) the AD at time t provides a direct and intuitive
measure of the precision expected for a measurement of a
given duration; 2) being a real space quantity, the AD is
immediately in the same units as that of the measured quan-
tity of interest; 3) the AD is powerful in detecting low fre-
quency, long-time scale drifts (43), which are critical for
single-molecule measurements of torque and twist; and 4)
the AD can be straightforwardly computed from the raw
experimental data without the need to be calibrated a priori.
In the following section, we explore the use of AD to quan-
tify the angle and torque precision of single-molecule mea-
surements. First, we present the results of stochastic
simulations to introduce the concept of AD and validate
our approach. We then use AD to compare the precision
of three different single-molecule torque spectroscopy tech-
niques: MTT, eMTT, and an OTW.
AD analysis of simulated traces

To explore the effects of the various system parameters on
the AD, we simulated traces of the stochastic rotational mo-
tion of a bead subject to Brownian fluctuations while held in
a harmonic trap (Fig. 1, B–D; Fig. S1). The simulated rota-
tional motion (about an axis through the bead’s center of
mass) reveals the effects of varying rotational trap stiffness
kq and rotational drag coefficient gq on the angular time
trace (Fig. 1 B) and on the angle AD (Fig. 1 C) and torque
AD (Fig. 1 D). In the green data set, gq ¼ 10 pN $ nm $ s
and kq ¼ 1000 pN $ nm/rad such that the characteristic
time is tc ¼ gq=kq ¼ 10 ms. To compare the effect of
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FIGURE 1 AD of simulated traces. (A) An illus-

tration of the octave-sampled overlapping AD is

shown. The example trace (black) contains 16

data points. Each data point is recorded during

the sampling period ts. The data are split into

bins of m data points. In octave-sampled data,

m ¼ 2integer (going from red to yellow, m ¼ 1, 2,

4, 8). Splitting in bins is possible in m different

frame shifts. For m ¼ 8, only three frame shifts

are displayed for clarity. (B) Simulated angle traces

of�1700 s each sampled at 50 kHz (corresponding

to 8:5� 107 data points) are shown for rotational

Brownian motion of particles in harmonic traps.

The left panel shows a zoom-in on the first 50 s

of the traces, and the right panel shows the histo-

grams for the full traces. The traces are offset verti-

cally for clarity. The red, green, and blue traces

(from top to bottom) are simulations with drag co-

efficient gq ¼ 100, 10, and 10 pN $ nm $ s and trap

stiffness kq ¼ 1000, 1000, and 100 pN $ nm/rad,

respectively. (C and D) Angle and torque ADs

for the traces in (B) are shown. Colored lines (cir-

cles) reflect the normal AD (octave-sampled over-

lapping AD). The results of the fits are indicated by

solid black lines, and their extrapolations are indi-

cated as dashed black lines (Eq. 3). The fitted pa-

rameters are gq ¼ 99.4 5 0.1, 9.9 5 0.01, and 10.0 5 0.01 pN $ nm $ s and kq ¼ 1009.6 5 36.6, 998.9 5 9.7, and 99.6 5 2.9 pN $ nm/rad for the

red, green, and blue data, respectively, from N ¼ 5 independent simulated traces for each condition. The dash-dotted and dashed magenta lines are the diffu-

sion and thermal limits, shown for the green data sets only. To see this figure in color, go online.
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different drag coefficients, we simulate the red data set with
the same stiffness but with a 10-fold-higher drag coefficient,
gq ¼ 100 pN $ nm $ s. To compare the effect of different
stiffnesses, we generate the blue data set with the same
drag coefficient as that of the green data set but with
10-fold-lower trap stiffness, kq ¼ 100 pN $ nm/rad. All
other parameters are identical for the three simulated traces.

The simulated angle traces provide an instructive
example of how the system parameters affect the observed
behavior. The widths of the histograms (Fig. 1 B)—and
thus, the amplitude of the angular fluctuations—are indif-
ferent to changes in drag coefficient (compare green and
red data sets) but are affected by changes in stiffness
(compare green and blue data sets); a decrease in stiffness
causes increased angular fluctuations, as expected from
the equipartition theorem. Another feature visible in the
angle traces is the timescale over which the angular fluctu-
ations occur. The fluctuations in the green data appear
‘‘denser’’ on the time axis compared to the red and blue
data because the characteristic time tc for the green data
set (10 ms) is smaller than for the red and blue data sets
(100 ms).

The ADs (Fig. 1, C and D) for our simulated traces all
display the expected trend of an initial rise proportional to
t1=2 and a transition to a decrease proportional to t�1=2

for larger t (43). Changing the drag coefficient causes a shift
of the curve on the time axis in both angle and torque ADs
(green and red data sets). This shift indicates that a higher
drag coefficient is linked to slower dynamics, which is
consistent with the higher characteristic time tc. For the
angle AD (Fig. 1 C), the change in stiffness initially has
no effect; the curves overlap in the diffusion limit (green
and blue data sets, Eq. 4). However, at longer timescales,
a higher stiffness results in an improved angular precision
(Eq. 5). In contrast, different stiffnesses do not alter the tor-
que precision for large t (Fig. 1 D) because in the thermal
limit, the torque precision is independent of the trap stiffness
kq (Eq. 6). The analytical expression for the AV (Eq. 3) pro-
vides an excellent fit to the data, and we recover the values
for kq and gq input into the simulations, confirming the val-
idity of the method (Fig. 1, C and D, where the range of
fitted data indicated by the black solid lines is constrained
at the shortest and longest integration time limits to avoid
the influence of noise not taken into consideration in
Eq. 3); the same approach was followed in Figs. 2, 3, and 4.
Angle and torque precision in the MTT

The MTT employ a cylindrical magnet to generate a pre-
dominantly vertical-oriented field and a side magnet to
apply an additional, smaller field in the horizontal direction.
MTT measure torque by detecting changes in the equilib-
rium position of the bead-rotation angle about the tether
axis upon over- and underwinding nucleic acid tethers
(30–32) (Materials and Methods and Fig. S2, A–C). Here,
we analyze traces of angular fluctuations recorded in our
MTT implementation (Fig. 2 A) using a 2.8-mm-diameter
magnetic bead and a 1-mm-diameter nonmagnetic fiducial
Biophysical Journal 114, 1970–1979, April 24, 2018 1973
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FIGURE 2 Angle and torque precision in the

magnetic torque tweezers (MTT). (A) A schematic

of the ‘‘classical’’ MTT implementation is shown

(32). Angle tracking is achieved by attaching a

smaller (1 mm diameter) nonmagnetic marker

bead (green) to a larger (2.8 mm diameter) mag-

netic bead (brown) and tracking the rotation of

the bead pair from charge-coupled device images

(inset). The magnetic bead is tethered to a glass

slide (blue) by a single DNA molecule (black),

held, and manipulated in a weak rotational trap

set up by vertically aligned permanent magnets

with a side magnet added (top). The axis of bead

rotation is indicated by the vertical dashed black

line. (B) Octave-sampled overlapping ADs of 32

angle traces of 100 s each sampled at 35 Hz (corre-

sponding to 3:5� 103 data points) are shown, re-

corded in a torque measurement on a single 7.9

kbp DNA molecule (each trace is shown as a

distinctly colored solid line, denoting the number

of applied turns). The octave-sampled points for

a single trace are shown as black circles. The fit

of the analytical expression for the AV (Eq. 3) is

shown as a solid black line, and its extrapolation

is shown as a dashed black line. The thermal limit

is indicated as a dashed magenta line. (C) Torque

AD of the same traces as (B) obtained by multipli-

cation with the corresponding trap stiffnesses (co-

lor-coding is as in (B)) is shown. Similar to (B),

octave-sampled points for one trace are shown as

black circles, the fit to Eq. 3 (multiplied by k2q)

is shown as a solid black line, and its extrapolation

is shown as a dashed black line. The thermal limit is indicated as a dashed magenta line. (D) The values for the trap stiffness kq determined from the fits for all

traces in (B) are shown. The data are approximately Gaussian distributed (solid black line) with a SD of 45 pN $ nm/rad. (E) Rotational friction coefficients gq

(distinctly colored circles) determined from the AV fits for all traces in (B) are shown as a function of the height of the bead above the flow cell surface. The

color-coding denotes the number of applied turns. The solid black line reflects a prediction for the rotational friction coefficient of a 2.8-mm-diameter bead

rotating on a circular trajectory, taking into account corrections due to the presence of the surface. To see this figure in color, go online.
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marker bead to track the rotation angle about the tether axis
from analysis of camera images (51) (Fig. 2 A, inset). We
focus on a representative data set consisting of 32 angle
traces, recorded while over- and underwinding a 7.9 kbp
DNA molecule tethered between the magnetic bead and
the flow cell surface and held at a stretching force of
�2 pN. Upon over- and underwinding the DNA by integer
numbers of turns, systematic changes of the equilibrium
angle position are visible (Fig. S2 C, middle panel, left
axis). These can be related to the changes in the torque ex-
erted by the molecule (Fig. S2 C, middle panel, right axis)
by multiplying with the mean trap stiffness (deduced from
the fits to AD curves, as detailed below, and equivalent to
deducing the trap stiffness from the SD of the angular fluc-
tuations; Fig. S2 C, top panel). In addition, we observe that
tether extension decreases rapidly past the buckling point of
the DNAmolecule for positive turns (corresponding to over-
winding) but stays approximately constant for negative
turns (corresponding to underwinding) because of torque-
induced DNA melting (32,52) (Fig. S2 C, bottom panel).

Applying our AD analysis to the angle traces recorded in
the MTT at different numbers of applied turns reveals some
variability but indicates that we generally reach an angle
1974 Biophysical Journal 114, 1970–1979, April 24, 2018
precision of �1� for a 50 s measurement (Fig. 2 B). From
fits of the analytical expression (Eq. 3) to the angle AV
data, we obtain the trap stiffness for each trace (Fig. 2 D),
revealing a �13% variation from trace to trace without
any systematic changes throughout the measurement
(Fig. S2 D). This yields a mean trap stiffness of 339 5
45 pN $ nm/rad, which is in excellent agreement with the
value obtained from directly computing the SD of the
angular fluctuations (330 5 46 pN $ nm/rad). Multiplying
each angle AD curve by its fitted value of the trap stiffness,
we convert the angle to a torque signal (Fig. 2 C). AD anal-
ysis of the torque signal indicates that the torque precision in
the MTT follows the thermal limit (Fig. 2 C, dashed
magenta line) for measurement times longer than �2 s
and reaches �5 pN $ nm after 50 s (Fig. 2 C). These results
are consistent with our previous torque precision estimate
for this setup (32) of 1–3 pN $ nm for a 300 s measurement.
In addition, we obtain values for the drag coefficient from
the AV fits that exhibit systematic changes with DNA tether
extensions, increasing by 70–80% upon decreasing the
extension from 2.4 to 0.7 mm (Fig. 2 E). Both the observed
value for the drag coefficients and the dependence on DNA
extension are in reasonable agreement with the predictions
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FIGURE 3 Angle and torque precision in the electromagnetic torque

tweezers (eMTT). (A) A schematic of the eMTT setup (35) is shown. A

magnetic bead (brown) is tethered to a glass slide (blue) by a single

3.4 kbp DNA molecule (black). The bead is lifted off from the surface by

a cylindrical magnet (top). Four coils (only two are shown here) generate

an in-plane magnetic field to orient the bead. Here, the angular orientation

of the magnetic bead is deduced from its spatial position within a circular

annulus whose radius is set by the distance between the tether attachment

point and the pole of the magnetic bead (35). The axis of bead rotation is

indicated by the vertical dashed black line. (B) The angle ADs of angle

traces of �2600 s each (except at 16 mT; 280 s) sampled at 100 Hz (corre-

sponding to 2:6� 105 data points) are shown, recorded on a single DNA-

tethered bead at 1, 2, 4, 8, and 16 mT (going from dark brown to light

brown). Colored lines (circles) reflect the normal AD (octave-sampled over-

lapping AD). The octave-sampled data are used to fit (solid black lines) the

data to the analytical expression (Eq. 3), and their extrapolations are shown

as dashed black lines. The dashed magenta line indicates the thermal limit

for the stiffest trap. (C) The torque ADs of the same traces as (B) obtained

by multiplication with the corresponding trap stiffnesses are shown. The co-

lor-coding is the same as in (B). The dashed magenta line indicates the ther-

mal limit. (D and E) The values of the rotational drag coefficient gq and the

rotational trap stiffness kq obtained from the fits in (B) are shown. The data

points and their corresponding error bars denote the average and SD,

respectively, from N ¼ 5 independent measurements. In (D), the dashed

black line is a constant-value fit to the drag coefficients. In (E), the dashed

black line is a linear fit to the data through the origin. (F) Drag coefficients

from AV fits for three different bead sizes (d ¼ 0.7, 1.05, and 2.8 mm; Figs.

S3–S5) are shown. Red circles and error bars are the drag coefficients

(mean 5 SD) determined from AV fits for differently sized beads (Figs.

S3 G–S5 G) averaged over measurements at different field strengths. Black

squares are the predictions from Eq. S10. The solid blue line is a fit of the

scaling relation gq � d3. To see this figure in color, go online.
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of a model (Fig. 2 E, solid black line) that describes the rota-
tion of a 2.8-mm-diameter bead along a circular trajectory,
taking into account the increase in friction coefficient due
to the proximity of the flow cell surface (53,54) (see
Eq. S10 in Supporting Materials and Methods, Section 7).
The observed dependence of the friction coefficient on
DNA tether extension highlights the ability of our AD anal-
ysis to detect subtle changes in measurement parameters and
demonstrates the importance of taking into account surface
proximity effects when evaluating friction coefficients in
single-molecule measurements (55).
Angle and torque precision in the eMTT at
different fields

eMTT (Fig. 3 A) are similar to MTT; the main difference is
that in the eMTT, electromagnets (implemented as two pairs
of Helmholtz coils) generate a field in the horizontal direc-
tion. eMTT have an advantage over MTT in that the hori-
zontal field component is readily tunable by altering the
current in the Helmholtz coils (35). The ability to tune the
trap stiffness, however, raises the question of what stiffness
is optimal for a given torque measurement application. To
explore the effects of trap stiffness and bead size, we
measured angular fluctuations and analyzed the ADs of
several differently sized DNA-tethered beads in the eMTT
(Figs. S3–S5); for each bead size, measurements were car-
ried out at different applied currents in the Helmholtz coils,
corresponding to the different applied fields in the horizon-
tal direction. We present the results of a single 0.7-mm-
diameter bead trapped at different magnetic field strengths
in Fig. 3.

From the AD of the angle signal in the eMTT, it is
apparent that higher fields, corresponding to higher trap
stiffnesses, give rise to a better angle precision (Fig. 3 B).
For the 0.7-mm-diameter beads, the measurements reach
�1� precision in 3 s at the highest field strength of 16 mT
(Fig. 3 B, lightest brown). This is much faster than what
was observed in the MTT (�50 s, Fig. 2 B) despite the lower
trap stiffness employed in the eMTT and results from our
use of much smaller beads in the eMTT measurement. Con-
verting the angle AD to torque AD by multiplication with
the trap stiffness (itself deduced by fitting the corresponding
angle AD curve), we find that the torque precision measure-
ments are independent of trap stiffness in the thermal limit,
i.e., at times longer than�1 s (Fig. 3 C), as is expected from
Eq. 6. The torque AD is identical for all employed trap stiff-
nesses for times between 1 and 100 s and already reaches a
torque precision of �5 pN $ nm after 1 s, which is again
much faster than in the MTT (�50 s, Fig. 2 C) because of
the smaller beads used here. The torque precision reaches
�0.5 pN $ nm for 100 s measurements (Fig. 3 C). The angle
ADs are well described by the analytical expression in Eq. 3,
yielding fitted drag coefficients gq (Fig. 3 D) that are inde-
pendent of the magnetic field, as expected, and fitted trap
stiffnesses kq (Fig. 3 E) that increase monotonically with
the magnetic field. In the field range used in our implemen-
tation of the eMTT (1–16 mT), the dependence of kq on field
can be reasonably approximated as linear (35) (Fig. 3 E,
dashed black line).

In these eMTT measurements, we start to see deviations
from the thermal limit behavior ðft�1=2Þ after �100 s,
and the torque AD signals for different field strengths begin
Biophysical Journal 114, 1970–1979, April 24, 2018 1975
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FIGURE 4 Angle and torque precision in the optical torque wrench

(OTW). (A) A schematic of the OTW setup (22) is shown. The objective

lens focuses a linearly polarized laser beam input (red) and traps a birefrin-

gent cylinder (gray) near the focus within a flow cell. Manipulation of the

linear polarization allows us to control the angular position of the particle.

At the output of the trap, the laser light is collected by a condenser lens. The

polarization state of the output reports on the torque transferred from beam

to particle. The axis of cylinder rotation is indicated by the vertical dashed

black line. (B) The angle AD obtained from (C) by division with the corre-

sponding trap stiffnesses is shown. Colored lines (circles) reflect the normal

AD (octave-sampled overlapping AD). The color-coding is the same as in

(C). The dashed magenta line indicates the thermal limit for the stiffest trap.

(C) The torque ADs of torque traces of 200 s each sampled at 100 kHz (cor-

responding to 2:0� 107 data points) are shown, recorded on a single rutile

TiO2 cylinder at 10, 20, and 40 mW (going from dark blue to light green).

The octave-sampled data are used to fit (solid black lines) the data to the

analytical expression (Eq. 3, multiplied by k2q), and their extrapolations

are shown as dashed black lines. The fits only provide two independent pa-

rameters, gq and kq, so the system was precalibrated (22) to obtain the de-

tector sensitivity in units of pN $ nm/mV. The dashed magenta line indicates

the thermal limit. The dash-dotted black line has slope of þ 1, correspond-

ing to linear drift. (D and E) The values of the rotational drag coefficient gq

and the rotational trap stiffness kq obtained from the fits in (C) are shown.

The data points and their corresponding error bars denote the average and

SD, respectively, from N ¼ 5 independent measurements. In (D), the

dashed black line is a constant-value fit to the drag coefficients. In (E),

the dashed black line is a linear fit to the data through the origin. To see

this figure in color, go online.
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to differ. In general, for times longer than�100 s, the torque
AD is higher for higher field strengths because of pro-
nounced drifts that become apparent with increases in the
torque AD with time for long times (Fig. 3 C, see traces
at 4 and 8 mT). The drifts are very likely due to heating
of the coils when relatively high currents are run to achieve
high fields for extended periods of time. Our present imple-
mentation of the eMTT requires �16 A to achieve �16 mT
field and is air-cooled only (35). The heating is most dramat-
ically visible in the trace at 16 mT, which had to be termi-
nated after �280 s (Fig. S3 A) as the coils reached a
temperature of 60�C, at which point they are shut down
by an automatic safety switch. A clear recommendation
1976 Biophysical Journal 114, 1970–1979, April 24, 2018
that emerges from the AD analysis is, therefore, to run at
low field strengths (and thus low trap stiffnesses) in the
eMTT for optimal torque measurements. In the absence of
drift, higher trap stiffnesses do not confer any disadvantages
in the torque precision; yet, the high currents required for
high trap stiffnesses tend to cause significant drifts because
of heating and thus deterioration of the torque precision for
times longer than �100 s. In contrast, for low currents and
trap stiffnesses, we observe very low levels of drifts even
for (very) long measurements, and reach, e.g., a best preci-
sion of�0.1 pN $ nm for�1000 s measurements at%2 mT.
Angle and torque precision in the eMTT for
different bead sizes

In addition, in the eMTTexperiments, we probe the effect of
different drag coefficients by comparing different bead sizes
at a roughly constant trap stiffness (Fig. S6). Similar to the
simulations (Fig. 1, C andD), a higher drag coefficient shifts
the AD curve to longer timescales. At intermediate aver-
aging times t ¼ 10–100 s, the smaller the bead, the better
the angle and torque precision, as expected from the corre-
sponding thermal limits (Eqs. 5 and 6, respectively). The
rotational drag coefficients obtained from the AV fits
(Fig. 3 F, red circles) are in good agreement with predictions
of the model (Fig. 3 F, black squares) that take into account
the bead and tether geometry and surface effects (Eq. S10)
and that roughly follow a gq � d3 scaling, where d is the
bead diameter (Fig. 3 F, solid blue line). The bead size anal-
ysis confirms that a decrease in drag coefficient improves
the precision in both angle and torque.

As an independent test of the torque precision achieved
in the eMTT, we analyzed a high-precision DNA torque
measurement that employed 1.05-mm-diameter beads and
a measurement time of 200 s per measurement point
(Fig. S7 A). The torque AD analysis (Fig. S4 F) suggests
that this measurement should achieve a torque preci-
sion of 0.5–0.9 pN $ nm at �200 s. We analyzed the devia-
tions of the measured torque values from a strictly linear
behavior in the elastic response regime (Fig. S7 B) and the
deviations from constant torque in the DNA melting regime
(Fig. S7 C). The deviations are approximately Gaussian
distributed with SDs of 0.9 and 0.6 pN $ nm for the two re-
gimes, respectively, which is in excellent overall agreement
with the expected precision from the AD analysis.
Angle and torque measurements in the OTW

In the OTW measurements, we keep the linear polarization
of the trapping beam fixed and measure the torque
transferred from the laser beam to a trapped, birefringent
cylinder undergoing thermal fluctuations (Materials and
Methods, Fig. 4 A). The cylinders are fabricated out of rutile
TiO2, which is selected over other materials (e.g., quartz
SiO2) for its extraordinarily high birefringence. Whereas
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the OTW directly measures angular momentum transfer
and thus torque, the torque traces are recorded in voltage.
The corresponding AD can be converted to either the
angle AD in degrees (Fig. 4 B) or the torque AD in pN $
nm (Fig. 4 C) using parameters obtained through a separate
calibration process (22). We also fit the torque AD (Eq. 3,
multiplied by k2q) to obtain values for the parameters kq
and gq. The drag coefficient gq is nearly independent of
laser power (Fig. 4 D) and averages to 0.13 5 0.01 pN $
nm $ s, which is in good agreement with a theoretical value
of �0.12 pN $ nm $ s (56). The angular trap stiffness kq in-
creases linearly with the laser power (Fig. 4 E), i.e., quadrat-
ically with the electric field amplitude (9). The ADs for the
OTW data (Fig. 4, B and C) report on the precision of this
experimental apparatus. As in the eMTT, we observe that
angular precision improves, e.g., from �0.03� to �0.007�

at �10 s (Fig. 4 B) with increased stiffness (achieved by
increasing laser power from 10 to 40 mW). At the highest
laser power, the measurements reach an angular precision
of �1� after only 0.3 ms, which is a much shorter timescale
than in the MTT and eMTT measurements, and it results
from the higher trap stiffness and lower drag coefficient in
the optical tweezers (compare D and E in Figs. 2, 3,
and 4). For the torque AD (Fig. 4 C), all curves converge
to the thermal limit. Similar dependencies for laser powers
up to 80 mW were observed in a separate data set (Fig. S9).

The best torque precision in the OTW achieved is �0.3
pN $ nm, which is comparable to �0.1 pN $ nm precision
achieved in the eMTT measurements. This requires the opti-
mized environmental conditions reflected in Fig. 4 and
Fig. S8 (see, for comparison, Fig. S9, where air currents
induced earlier onset of drift) and is achieved after an aver-
aging time of �10 s at a laser power of 10 mW (Fig. 4 C).
On longer timescales, we find that drift in the OTW becomes
dominant and deteriorates the precision. Similar dominance
of drift only appears after �100 s in the eMTT and only at
high Helmholtz fields (R4 mT). The earlier onset of drift in
the OTW compared to the eMTT derives from the increased
number of optical and electronic components present,
coupled to laser-power-dependent heating (observable
from �10 s onwards in Fig. 4, B and C). These clear differ-
ences observed in the noise highlight the ability of our AD
analysis to detect and compare noise components among
different setups and environmental conditions.
DISCUSSION

Examination of the AD provides insights into the achievable
precision and optimal measurement duration and parame-
ters. For a hypothetical measurement without drift, the AD
can become arbitrarily small, provided that the trace is
averaged long enough, as the AD decreases in the thermal
limit as t�1=2. This would imply that the precision achiev-
able experimentally could be arbitrarily high. In practice,
of course, noise other than the white noise deriving from
thermal fluctuations will kick in and limit further improve-
ments in precision. Given the additive nature of the AD
(Eq. 2), at a certain averaging time t, drift will start to domi-
nate over the thermal limit; on longer timescales, the preci-
sion will no longer improve with averaging but rather
worsen. The resulting minimum in the AD then designates
the best achievable precision and, hence, the optimum mea-
surement time. Different sources of drift will exhibit distinct
signatures in the AD. For example, for linear drift, the AD
should increase as t1 (Supporting Materials and Methods,
Section 6), as we observe for the OTW traces (Fig. 4, B
and C, t ¼ 10–100 s). If the dominant source of noise has
a 1=f character, then the AD scales as t0 (i.e., becomes con-
stant; Supporting Materials and Methods, Section 6), as we
observe around 2 s in the AD plots for the OTW data set pre-
sented in Fig. S9, E and F.

In this work, we have introduced the use of the AD to
evaluate the performance of several instruments designed
to measure torque on individual (biological) molecules. In
both the MTT and eMTT measurements, drift does not
appear to significantly limit the measurements, even
for very long measurement times (Fig. 3, B and C, t ¼
100–1000 s), provided that low enough Helmholtz fields
(%2 mT) are used to avoid drifts through heating of the
coils in the eMTT configuration. It might be possible to
avoid this limitation in future implementations, e.g., by
configuring water-cooled coils. Nonetheless, even the cur-
rent instrument enables measurements with a torque preci-
sion better than 1 pN $ nm (Fig. 3 C; Figs. S3 F–S5 F and
S7). We achieved a similar torque precision (�0.3 pN $
nm in 10 s, Fig. 4 C; for direct comparison with the
eMTT, see Fig. S10) in the OTW under the best conditions
(low laser power and blocking of air current). Potentially,
the precision of the OTW can be enhanced by further im-
provements to the instrument’s long-term stability.

A general lesson from our analysis is that to optimize tor-
que and/or angle precision, the drag coefficient should be
minimized particularly by using smaller particles (8). The
eMTT data sets clearly demonstrate the improvements in
precision obtained through using smaller beads; recent ap-
proaches to angle and torque measurements using gold
nanoparticles push this development even further (15).
Furthermore, once a particle size has been selected, it is
generally advisable to maximize the trap stiffness for
improved angle (but not torque) precision, given measure-
ment times in which precision is thermally limited. How-
ever, there are important caveats to this general advice:
first, smaller particles usually result in reduced stiffness
and achievable torque because they contain less volume
for torque exchange (lower magnetic content in magnetic
beads and a shorter light path in birefringent particles); sec-
ond, increasing the trap stiffness can result in increased drift
because of practical limitations (e.g., heating from increased
current in eMTT or laser power in OTW), deteriorating the
precision for longer measurement timescales; third, the use
Biophysical Journal 114, 1970–1979, April 24, 2018 1977
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of ever-smaller particles may push the limits of the detection
systems (e.g., pixel size for camera-based signal acquisition
and diode sensitivity for photodiode-based signal acquisi-
tion); fourth, maximization of the trap stiffness and minimi-
zation of the drag coefficient reduce the characteristic
time tc, which demands faster acquisition systems, as
most calibration methods (and particularly AD analysis;
see Supporting Materials and Methods, Section 1) require
measurements on timescales shorter than tc; and finally,
the timescale of dynamics in the system under investigation
and the quantity of interest, angle or torque, ultimately
determine the optimal drag coefficient and stiffness of
operation.

The AD provides a direct and quantitative measure for the
precision in single-molecule experiments. It can therefore
be employed as a tool for optimizing experimental assays;
it can be used to systematically track down sources of drift
and other forms of noise and to determine the optimal mea-
surement time at the desired precision. We foresee that us-
age of the AD analysis will instruct researchers about
optimal measurement strategies and will thus facilitate
new breakthroughs in the field of single-molecule torque
spectroscopy.
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Supplementary Text 

S1. Comparison of magnetic tweezers and optical tweezers in applying Allan 
variance 

The Allan variance is mathematically a two-sample variance with no dead time, where 
sampling interval 𝑇  is the same as averaging time 𝜏  ( 𝑇 = 𝜏 ) (for details, see 
Supplementary Text S5): 

𝜎𝜃
2(𝑀, 𝑇, 𝜏) = 𝜎𝜃

2(2, 𝜏, 𝜏) = 𝜎𝐴𝑉,𝜃
2 (𝜏).    Equation S1 

For the magnetic tweezers (or other using video microscopy-based technique), there is 
negligible dead time between successive frames of a camera so that each measurement is 
a physical average of the signal during 𝑇 (𝑇 ≈ 𝜏), as described by the above equation. In 
the optical tweezers, detection occurs via photodiodes that have very fast response times. 
In this context, such a short response time can be considered as negligible integration 
time. Unless a specific configuration is employed in either acquisition hardware or 
software, no signal averaging (i.e., integration) occurs during the sampling interval 𝑇 . 
Hence, the inverse of sampling frequency is equivalent to the dead time. Thus, in 
photodiodes the dead time far exceeds the integration time. 
 
Nonetheless, the application of AV for photodiode-based detection remains valid 
provided that the sampling period 𝑇 is much shorter than the characteristic time 𝜏𝑐 of the 
system. For such a case, a trapped particle essentially moves in a straight line between 
consecutive data points. For such a straight line, the average position calculated using the 
integral (corresponding to measurements that include averaging signal over 𝑇 ) is 
identical to the average of the two end points of the line (corresponding to measurements 
that consist of two sampled signal values without averaging over 𝑇). In other words, while 
optical tweezers measurements do not fulfill the zero-dead-time assumption (𝑇 = 𝜏) in a 
strict sense since physically 𝑇 ≫ 𝜏 , effectively the measured signal is identical to that 
acquired over 𝑇 = 𝜏 condition, provided that 𝑇 ≪ 𝜏𝑐 . Hence, OTW and MT data can be 
interpreted with the same Allan variance equation. To our understanding, this forms the 
basis for the previous application of Allan variance analysis to linear optical tweezers data 
(e.g. Refs. (1-4)). The importance of fulfilling the condition 𝑇 ≪ 𝜏𝑐  in optical tweezers 
measurements is demonstrated in one of these literatures (Figure 4a of Ref. (1)), where it 
is shown that measured Allan variance curves show improved agreement with theoretical 
predictions when the data acquisition frequency 𝑓𝑠 is sufficiently high (𝑇 = 𝑓𝑠

−1 ≪ 𝜏𝑐). 
 

S2. The effect of noise correlation in Allan variance 

The Allan variance is calculated from the difference between neighboring samples 𝜃̅𝑖 , 
which are averages over a time interval 𝑚𝜏𝑠 (Eq. 2 of the main text). For a single value of 
𝑚 , i.e., a single integration time, the differences are not all independent (S2.1). The 
number of independent differences is important, because it determines the noise on the 
Allan variance. Also, for different values of 𝑚 , not all of the calculated Allan variance 
values are independent (S2.2). The independence of the Allan variance at different values 
of 𝑚  is important, because it is a requirement in some fitting algorithms. Here, we 
elaborate on the independence between the difference terms of Allan variance, and 
discuss its implications for fitting Allan variance data. 
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S2.1. Independence of the difference between consecutive samples at a single 
integration time 

For a data set with a finite number of elements, the “simple” Allan variance can be 
estimated from its discrete form (Eq. 2 of the main text): 

 
𝜎𝜃

2(𝑚𝜏𝑠) =
1

2(𝑀 − 1)
∑ (𝜃̅𝑖+1 − 𝜃̅𝑖)2

𝑀−1

𝑖=1

 , Equation S2 

where 𝜏𝑠 is the sampling period taken to be equal to the integration time (e.g., the dead 
time between frames is assumed to be zero in case of camera-based detection), 𝑚 is the 
number of data points in a bin, 𝑀 is the number of bins, and sample 𝜃̅𝑖  is the mean of the 
𝑖𝑡ℎ bin of length 𝑚𝜏𝑠. The term (𝜃̅𝑖+1 − 𝜃̅𝑖) will be referred to as the difference term. Each 
measurement 𝜃̅𝑖 , except for the first and last (i.e., 𝜃̅1  and 𝜃̅𝑀 ), occurs twice in the 
difference term: once in conjunction with its preceding bin and once in conjunction with 
its successive bin. Therefore the (𝑀 − 1) difference terms are not all independent of each 
other (5). 
 
The use of a fully “overlapping” Allan variance (Fig. 1A) can improve the estimate of the 
Allan variance even further: 

where 𝑁 = 𝑀 ∙ 𝑚 is the total number data points, 𝑗 is the position of the first data point of 
a bin with 𝑚 data points, and 𝜃̅𝑗  is the average over a bin of length 𝑚𝜏𝑠 with the first data 

point located at 𝑗. Here, the term (𝜃̅𝑗+𝑚 − 𝜃̅𝑗) will be referred to as the difference term. 

Again, each measurement 𝜃̅𝑗  occurs twice, except for the first and last successive 𝑚 

measurements (i.e., 𝜃̅1 ,   𝜃̅2 ,   𝜃̅3 , ... 𝜃̅𝑚  and 𝜃̅𝑁+1−2𝑚+1, 𝜃̅𝑁+1−2𝑚+2 ,   𝜃̅𝑁+1−2𝑚+3 , ... 
𝜃̅𝑁+1−2𝑚+𝑚). In addition, 𝜃̅𝑗  also has overlapping data points with the successive (𝑚 − 1) 

measurements (i.e., 𝜃̅𝑗+1 , 𝜃̅𝑗+2 , 𝜃̅𝑗+3 , ... 𝜃̅𝑗+(𝑚−1)). Therefore the (𝑁 + 1 − 2𝑚) difference 

terms are not all independent of each other. 
 
The degree of dependence of the difference terms should be taken into consideration 
when computing the noise in the estimate of the Allan variance. In both the “simple” and 
“overlapping” Allan variance, the (𝑀 − 1)  and (𝑁 + 1 − 2𝑚)  differences are normally 
distributed with zero mean (6), and the squared differences are gamma distributed, hence 
the estimate of the Allan variance is gamma distributed (6). The shape parameter of this 
gamma distribution is equal to half the number of degrees of freedom. Due to the 
aforementioned dependence of the difference terms, the number of degrees of freedom 
lies below the number of difference terms. It is important to know the number of degrees 
of freedom, as fitting algorithms such as maximum likelihood estimation account for the 
noise distribution of the calculated Allan variance, which involves the number of degrees 
of freedom. In their paper, Lansdorp and Saleh estimate the number of degrees of freedom 
and recommend a shape factor for the gamma distribution (Supplementary Text S3), 
which works reasonably well for fitting of both “simple” and “overlapping” Allan 
variances (6). 

 
𝜎𝜃

2(𝑚𝜏𝑠) =
1

2(𝑁 + 1 − 2𝑚)
∑ (𝜃̅𝑗+𝑚 − 𝜃̅𝑗)

2
𝑁+1−2𝑚

𝑗=1

 ,   Equation S3 
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S2.2 Independence of the Allan variance at different integration times 

Most fitting algorithms assume the noise of separate points, here the points at different 
integration times 𝑚𝜏𝑠, to be independent. For different integration times, in particular for 
successive values of 𝑚 , the Allan variances are calculated from different bin sizes; 
however, the difference terms of which the Allan variances are comprised can be nearly 
identical, because most values in a bin of size 𝑚 are identical to the values in a bin of size 
𝑚 + 1 . Therefore calculating the Allan variance for all values of 𝑚  is redundant; 
calculating the octave-sampled Allan variance for 𝑚 = 2𝑖𝑛𝑡𝑒𝑔𝑒𝑟 is sufficient and ensures 
nearly independent Allan variance values (7). Moreover, the octave-sampling has an 
advantage in computational efficiency over using all values of m. In our benchmark test, 
it is 108 ± 3, 852 ± 31, and 6620 ± 327 times shorter in computation time, for the input 
data sizes of 3 × 103 , 3 × 104 , and 3 × 105  elements (Supplementary Fig. S11). As an 
example, for 3 × 105 elements, only ~1 s was required to compute the octave-sampled AV 
while ~2 h was required when using all values of 𝑚. The benchmark test was repeated 
three times with a desktop PC equipped with Intel®  Core™ i5-2400 (3.10 GHz) processor 
and 16 GBytes DDR3 (PC3-12800) memory. 
 

S3. The shape factor used for MLE fitting of Allan variance data 

The shape factor 𝜂𝐴𝑉  (Eq. S4) used in the maximum likelihood estimation (MLE) fitting of 

Allan variance data in our manuscript provides information about the extent to which the 

weighting is different between data points. We employ the following form: 

 𝜂𝐴𝑉(𝑚) =
1

2
(

𝑁

𝑚
− 1),                              Equation S4 

where 𝑁 is the number of total data points and 𝑚 is the bin size for the octave-sampled 

Allan variance, in powers of 2 (i.e., 𝑚 = 1, 2, 4, 8, … up to ≤ 𝑁/2) (6). 

 

S4. Matlab routine for angular Langevin dynamics simulation 

The Matlab code (tested in Matlab version R2017b) listed below is used to generate 

simulated angular fluctuation datasets in Fig. 1 and Supplementary Fig. S1. It simulates 

a particle trapped in a harmonic potential while subject to overdamped angular motion 

(Eq. 7 of the main text; also refer Equations S30-S32 of Ref. (8)). The equation of motion 

(and hence the Matlab code) are very similar to the case of linear trapping (Supplemental 

materials of Ref. (9)), except that the units of the physical quantities differ. After execution 

of this code, the 'theta' array contains the angular position as a function of 'time' 

array as shown in Fig. 1B and Supplementary Fig. S1A. This simulated raw data can be 

used to calculate Allan deviation and other plots such as ACF and PSD. 
 
%%%%%%%%%%%%%   Angular Langevin dynamics simulation in Matlab   %%%%%%%%%%%%% 

 

gamma = 10;                         % pN*nm*s, rotational drag coefficient 

kappa = 1000;                       % pN*nm/rad, angular stiffness 

kT = 4.1;                           % pN*nm, thermal energy at room temperature 

dt = 20e-6;                         % s, sampling period 
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N = 2^20;                           % number of data points 

Nloop = N - 1;                      % number of loops 

time = (0:Nloop)*dt;                % s, time array 

rv = randn([1,Nloop]);              % random variable (mean = 0, std = 1) 

tau_thermal = rv*... 

            sqrt(2*kT*gamma/dt);    % pN*nm, torque from thermal noise 

theta(1) = 0;                       % rad, initial angular position 

for i = 1:Nloop 

 tau_external(i) = -kappa*theta(i); % pN*nm, external torque 

 dtheta = ((tau_external(i) + ... 

        tau_thermal(i))/gamma)*dt;  % rad, change in angular position 

 theta(i+1) = theta(i) + dtheta;    % rad, angular position in the next step 

end 

 

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 

 

S5. Comparison of Allan variance to other variances 

The Allan variance is a special case of the 𝑀-sample variance. This 𝑀-sample variance 
includes several other variances as special cases (including the commonly employed 
“normal” variance) and is expressed as (10): 

 

𝜎𝜃
2(𝑀, 𝑇, 𝜏) =

1

𝑀 − 1
∑ (𝜃̅𝑖 −

1

𝑀
∑ 𝜃̅𝑗

𝑀

𝑗=1

)

2

 

𝑀

𝑖=1

, Equation S5 

where 𝑀  is the number of samples, 𝑇  is the time between samples, 𝜏  is the time over 
which each sample is averaged, 𝜃̅𝑖  is the 𝑖𝑡ℎ  measured sample averaged over 𝜏 , and 
1

𝑀
∑ 𝜃̅𝑗

𝑀
𝑗=1  is the mean over all 𝑀 samples. In most interpretations of the “normal” variance, 

the measurements are considered instantaneous (𝜏 → 0, often 𝜏 ≪ 𝜏𝑐  is sufficient); the 
“normal” variance is 𝜎𝜃

2(𝑀, 𝑇, 0) or, written as an infinite time average, 𝜎𝜃
2 = 〈(𝜃𝑖 − 𝜃̅)2〉. 

For a white noise process, this variance is independent of the number of measurements 
𝑀 , so more measurements do not improve the precision of 𝜃 . If the time between 
measurements 𝑇  equals the averaging time 𝜏 , the variance 𝜎𝜃

2(𝑀, 𝜏, 𝜏)  decreases for 
extended averaging time, thereby improving the precision. For example, the variance for 
Brownian motion in a harmonic potential is expressed as (11-13): 

 
𝜎𝜃

2(𝑀, 𝜏, 𝜏) = 𝐴 (
𝜏𝑐

𝜏
)

2

(2
𝜏

𝜏𝑐
+ 2 exp (−

𝜏

𝜏𝑐
) − 2) , Equation S6 

where 𝐴 = 𝑘𝐵𝑇/𝜅𝜃  and 𝜏𝑐 = 𝛾𝜃/𝜅𝜃. This equation resembles the equation for the Allan 
variance (Eq. 3 of the main text), and in the long time limit, 𝜏 ≫ 𝜏𝑐 , it approaches the same 
thermal limit. In the short time limit, 𝜏 ≪ 𝜏𝑐, it converges to the “normal” variance, 𝜎𝜃

2 =
𝑘𝐵𝑇 𝜅𝜃⁄ . The minimum number of samples to calculate the 𝑀-sample variance is two, and 
the corresponding variance 𝜎𝜃

2(2, 𝑇, 0) can be written as 𝜎𝜃
2(2, 𝑇, 0) = 1

2
(𝜃2 − 𝜃1)2 or, as 

an infinite time average, 𝜎𝜃
2 = 1

2
〈(𝜃𝑖+1 − 𝜃𝑖)2〉. This variance uses the difference between 

neighboring measurements, instead of the difference from the mean. Therefore the two-
sample variance is very useful in removing drift and other low frequency noise. The Allan 
variance is a two-sample variance with no dead time, i.e., 𝜎𝐴𝑉,𝜃

2 (𝜏) = 𝜎𝜃
2(2, 𝜏, 𝜏)  (10). The 

reduced sensitivity to drift at short time scales and the increase in precision (for white 
noise processes) at long time scales make the Allan variance a very useful tool in 
characterizing our single-molecule torque spectroscopy instruments. 
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S6. Comparison of Allan variance to power spectrum analysis 

An alternative to the variances in the time domain is provided by the power spectral 
density in the frequency domain. The power spectrum describes to what extent different 
frequencies contribute to the variance. A power spectrum can be converted to the 
corresponding Allan variance using a transfer function 𝐻(𝑓) (10): 

 
𝐻(𝑓) =

2 sin4(𝜋𝜏𝑓)

(𝜋𝜏𝑓)2
 , Equation S7 

 
𝜎𝐴𝑉

2 (𝜏) = ∫ 𝑆(𝑓)𝐻(𝑓)𝑑𝑓 

∞

0

, Equation S8 

where 𝑆(𝑓) is the one-sided power spectrum. Conversely, the Allan variance 𝜎𝐴𝑉
2 (𝜏) can 

be converted into a power spectrum 𝑆(𝑓) by plotting 2𝜏𝜎𝐴𝑉
2 (𝜏) as a function of 𝜋𝜏 = 𝑓−1 

(3). Some typical types of noise, like white noise, flicker noise, and Brownian noise are 
characterized by a frequency dependence with integer exponent, here 𝑓0, 𝑓−1, and 𝑓−2, 
respectively. These three have corresponding time dependencies for the Allan variance, 
𝜏−1 , 𝜏0 , and 𝜏1 , respectively (10). As a remark, linear drift scales as 𝜏2 , but the 
corresponding power spectrum does not scale as 𝑓−3  (10). The one-sided power 
spectrum for Brownian motion in a harmonic potential is given by: 

 
𝑆(𝑓) =

𝐴

1 + (𝑓 𝑓𝑐⁄ )2
 , Equation S9 

 

where 𝐴 = 4𝜏𝑐 𝑘𝐵𝑇 𝜅⁄  and 𝑓𝑐 = 𝜅 2𝜋𝛾⁄ . In the high frequency limit 𝑓 ≫ 𝑓𝑐 , 𝑆(𝑓)  is 
proportional to 𝑓−2. This Brownian noise corresponds to the diffusion limit in the Allan 
variance ∝ 𝜏1 (Eq. 4 of the main text). In the low frequency limit 𝑓 ≪ 𝑓𝑐 , 𝑆(𝑓)  is 
proportional to 𝑓0. This white noise is linked to the thermal limit in the Allan variance ∝
𝜏−1 (Eq. 5 of the main text). If the frequency bandwidth Δ𝑓 ≪ 𝑓𝑐 , the area under the power 
spectrum from 0 Hz to Δ𝑓 approximates the angular precision by the variance 𝜎2 = 𝐴 ∙ Δ𝑓 
(14). The Allan variance, however, provides a much more convenient measure for the 
precision, especially if drift and low frequency noise become apparent. 
 

S7. Rotational drag coefficient of a bead on a circular trajectory 

A sphere of radius 𝑅𝑏𝑒𝑎𝑑 , rotating about an axis at a radial distance of 𝑅𝑐𝑖𝑟𝑐𝑙𝑒  from its 

center, at a distance 𝐷 from the surface, immersed in a fluidic medium of viscosity 𝜂, has 

a rotational friction coefficient (Equation 18 of Refs. (15, 16)): 

𝛾𝜃 ≈
𝛾𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙

1−(
1

8
)(

𝑅𝑏𝑒𝑎𝑑
𝐷

)
3 +

𝛾𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙𝑅𝑐𝑖𝑟𝑐𝑙𝑒
2

1−(
9

16
)(

𝑅𝑏𝑒𝑎𝑑
𝐷

)+(
1

8
)(

𝑅𝑏𝑒𝑎𝑑
𝐷

)
3 ,  Equation S10 

where  𝛾𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑙 = 8𝜋𝜂𝑅𝑏𝑒𝑎𝑑
3  and  𝛾𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛𝑎𝑙 = 6𝜋𝜂𝑅𝑏𝑒𝑎𝑑. 
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Supplementary Figures 
 

 
Figure S1. Additional analysis of the simulated traces in Fig. 1 of the main text. A) Simulated angle traces of ~1700 
s each sampled at 50 kHz (corresponding to 8.5 × 107 data points) for the Brownian motion of a particle in a harmonic 
trap. A zoom-in on the first 50 s of each trace is shown. The traces are offset vertically for clarity. The red, green, and 
blue traces (from top to bottom) are simulations with drag coefficients 𝛾𝜃 =  100, 10, and 10 pNnms, and trap 
stiffnesses 𝜅𝜃 = 1000, 1000, and 100 pNnm/rad, respectively. Same data as in Fig. 1B. B) Histograms for the full traces. 
The solid black lines are Gaussian fits to the histograms. C) Autocorrelation function analysis (ACF) of the full traces. 
Black lines are fits to the data, 𝐴𝐶𝐹 ∝ exp(−𝜏/𝜏𝑐), with their extrapolations shown as dashed black lines. D) Power 
spectral density (PSD) analysis of the full traces. Black lines are fits to the data (Eq. S9). E) Angle Allan deviation (AD). 
Colored lines (circles) reflect the normal AD (octave-sampled overlapping AD). Same data as in Fig. 1C. The solid black 
lines are fits to the data (Eq. 3). The dash-dotted and dashed magenta lines are the diffusion and thermal limits, shown 
for the green trace only. F) Torque AD. Same data as in Fig. 1D. G,H) Rotational drag coefficient 𝛾𝜃 and trap stiffness 𝜅𝜃 
obtained from the AD, PSD, and ACF fits. The bar heights and error bars denote the average and standard deviation, 
respectively, from 𝑁 = 5 independent simulated traces. The dashed black lines indicate the parameter values used in 
the simulations. 
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Figure S2. Torque measurements in the MTT. Data shown are for a 2.8 µm diameter magnetic bead tethered to a 
surface by a 7.9 kbp DNA molecule at a stretching force of ~2 pN in PBS buffer, using the same data as in Fig. 2 of the 
main text. A) Angle traces of 100 s each at 0 (light green) and 50 turns (red). B) Histograms of the full traces. The solid 
black lines are Gaussian fits to the histograms. A shift in the mean angle position upon overwinding the molecule is 
readily apparent and provides the basis for the single-molecule torque measurement. C) Systematic analysis of angle 
traces as a function of the number of applied turns, such as the ones shown in A,B), reveals systematic shifts in the mean 
angle (middle panel), while the standard deviations of the fluctuations remain constant (top panel). The data points are 
color-coded as a function of the number of applied turns. The average trap stiffness (~339 pNnm/rad) of the rotational 
trap is determined from Allan variance fits, enabling a direct conversion of the mean angle to torque (middle panel, 
right axis). The bottom panel shows the tether extension as a function of the applied number of turns obtained in the 
same measurement. The tether extension decreases linearly with the number of applied turns beyond ~35 turns, as the 
molecule buckles and is plectonemically supercoiled in this regime. Note the corresponding plateau in the torque signal 
(~24 pNnm) for > 35 turns (the dashed black line in this regime is a constant-value fit). Around zero turns, the 
molecule opposed the applied torque elastically, resulting in an approximately constant extension of the molecule and 
a linear dependence of the torque on applied turns (the solid black line in this regime is a linear fit). Upon underwinding 
(corresponding to negative turns), the DNA extension remains approximately constant and the torque exhibits a plateau 
at the critical melting torque ~–11 pNnm (the dashed black line in this regime is a constant-value fit). D) Trap stiffness 
determined from Allan variance fits (same data as in Fig. 2D), shown as a function of DNA extension. Color-coding is as 
in C). E) Histogram of the friction coefficient determined from the Allan variance fits (same data as in Fig. 2E). 
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Figure S3. Additional analysis of the eMTT data for 0.7 µm diameter beads. Data and color-coding (increasing 
magnetic field strengths of 1, 2, 4, 8, and 16 mT, going from dark brown to light brown) as in Fig. 3 of the main text. A) 
Zoom-in on the first 400 s (at 16 mT, 280 s) of the angle traces of ~2600 s each sampled at 100 Hz (corresponding to 
2.6 × 105 data points). The traces are offset vertically for clarity. B) Histograms over the full traces. The solid black lines 
are Gaussian fits to the histograms. C) Autocorrelation function analysis. The solid black lines are fits to the data, and 
their extrapolations are shown as dashed black lines. D) Power spectrum analysis. E) Angle Allan deviation (AD). 
Colored lines (circles) reflect the normal AD (octave-sampled overlapping AD). Same data as in Fig. 3B. The dashed 
magenta line indicates the thermal limit for the stiffest trap. The fitted parameters are displayed in G,H). F) Torque AD. 
Same data as in Fig. 3C. The dashed magenta line corresponds to the thermal limit. G) Rotational drag coefficient 𝛾𝜃 
obtained from the AD fits in E) versus magnetic field strength. The dashed black line is a constant-value fit to the data. 
Same data as in Fig. 3D. The data points and their corresponding error bars denote the average and standard deviation, 
respectively, from 𝑁 = 5 independent measurements. H) Rotational trap stiffness 𝜅𝜃 obtained from the AD fits in E) 
versus magnetic field strength. The solid black line is a linear fit to the data. Same data as in Fig. 3E. 
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Figure S4. MyOne (1.05 µm diameter) beads trapped at different field strengths using eMTT. The color-coding 
indicates increasing magnetic field strength (4, 8, 12, and 16 mT, going from red to yellow). A) Zoom-in on the first 400 
s (at 16 mT, 95 s) of the angle traces of ~1300 s each sampled at 100 Hz (corresponding to 1.3 × 105 data points). The 
traces are offset vertically for clarity. B) Histograms over the full traces. The solid black lines are Gaussian fits to the 
histograms. C) Autocorrelation function analysis. The solid black lines are fits to the data, and their extrapolations are 
shown as dashed black lines. D) Power spectrum analysis. E) Angle Allan deviation (AD). Colored lines (circles) reflect 
the normal AD (octave-sampled overlapping AD). The dashed magenta line indicates the thermal limit for the stiffest 
trap. The fitted parameters are displayed in G,H). F) Torque AD. The dashed magenta line corresponds to the thermal 
limit. G) Rotational drag coefficient 𝛾𝜃 obtained from the AD fits in E) versus magnetic field strength. The dashed black 
line is a constant-value fit to the data. The data points and their corresponding error bars denote the average and 
standard deviation, respectively, from 𝑁 = 5 independent measurements. H) Rotational trap stiffness 𝜅𝜃 obtained from 
the AD fits in E) versus magnetic field strength. The dashed black line is a linear fit to the data. 
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Figure S5. M270 (2.8 µm diameter) beads trapped at different field strengths using eMTT. The color-coding 
indicates increasing magnetic field strength (1, 2, and 4 mT, going from green to light yellow). A) Zoom-in on the first 
400 s of the angle traces of ~650 s each sampled at 100 Hz (corresponding to 6.5 × 104 data points). The traces are 
offset vertically for clarity. B) Histograms over the full traces. The solid black lines are Gaussian fits to the histograms. 
C) Autocorrelation function analysis. The solid black lines are fits to the data, and their extrapolations are shown as 
dashed black lines. D) Power spectrum analysis. E) Angle Allan deviation (AD). Colored lines (circles) reflect the normal 
AD (octave-sampled overlapping AD). The dashed magenta line indicates the thermal limit for the stiffest trap. The fitted 
parameters are displayed in G,H). F) Torque AD. The dashed magenta line corresponds to the thermal limit. G) 
Rotational drag coefficient 𝛾𝜃 obtained from the AD fits in E) versus magnetic field strength. The dashed black line is a 
constant-value fit to the data. The data points and their corresponding error bars denote the average and standard 
deviation, respectively, from 𝑁 = 3 independent measurements. H) Rotational trap stiffness 𝜅𝜃 obtained from the AD 
fits in E) versus magnetic field strength. The dashed black line is a linear fit to the data. 
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Figure S6. Angle and torque Allan deviation for different bead sizes in the eMTT. The traces were selected from 
Supplementary Figs. S3-S5 in order to obtain similar trap stiffnesses (~60 pN·nm/rad). We record the fluctuations of 
a MagSense bead (𝑑 = 0.7 μm) at 4 mT (brown, 𝜅𝜃 = 58 pN·nm/rad), a MyOne bead (𝑑 = 1.05 μm) at 12 mT (orange, 
𝜅𝜃 = 54 pN·nm/rad), and a M270 bead (𝑑 = 2.8 μm) at 2 mT (light green, 𝜅𝜃 = 64 pN·nm/rad). A) Angle Allan deviation. 
B) Torque Allan deviation. The solid black lines are fits to the data, and their extrapolations are shown as dashed black 
lines in A,B). The dashed magenta lines indicate the thermal limits. 
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Figure S7. High-precision torque measurements in the eMTT and estimates of torque precision. A) Torque versus 
applied turns measurement for a 7.9 kbp DNA molecules in high-salt buffer (TE buffer with 550 mM NaCl) using 1.05 
µm diameter MyOne beads at a stretching force of 3.5 pN, with an angular trap stiffness of ∼50 pN·nm/rad). Data are 
taken from Figure 5d of Ref. (17). The experimental torque measurements are shown as red circles. Each data point 
corresponds to a measurement of 200 s. The solid dark gray line is a fit of a model of DNA elasticity (17). Data points in 
the elastic response regime of DNA (denoted in gray) are characterized by a linear torque versus turns dependence. At 
a negative torque of ~–11 pNnm, DNA undergoes torque-induced melting (blue data points). B) Deviation of the 
experimental data in the linear response regime from the best linear fit (gray data points fitted by solid dark gray line 
in A)). The solid black line shows a Gaussian fit to the data, yielding a standard deviation of 0.9 pNnm. C) Deviations of 
the experimental data in the torque-induced DNA melting regime from the best fit constant (blue data points fitted by 
solid light blue line in A)). The solid black line shows a Gaussian fit with a standard deviation of 0.6 pNnm. 
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Figure S8. Additional analysis of the OTW data in Fig. 4 of the main text. The color-coding is the same as in the main 
text (10, 20, and 40 mW, going from dark blue to light green). A) Zoom-in on the first 0.1 s of the torque traces of 200 s 
each sampled at 100 kHz (corresponding to 2.0 × 107  data points). The traces are offset vertically for clarity. B) 
Histograms over the full traces. The solid black lines are Gaussian fits to the histograms. C) Autocorrelation function 
analysis. The solid black lines are fits to the data, and their extrapolations are shown as dashed black lines. D) Power 
spectrum analysis. E) Angle Allan deviation (AD). Colored lines (circles) reflect the normal AD (octave-sampled 
overlapping AD). Same data as in Fig. 4B. The dashed magenta line indicates the thermal limit for the stiffest trap. F) 
Torque AD. Same data as in Fig. 4C. The dashed magenta line corresponds to the thermal limit. The dash-dotted black 
line has slope +1 , corresponding to linear drift. The fitted parameters are displayed in G,H). G) Rotational drag 
coefficient 𝛾𝜃 obtained from the torque AD fits in F) versus laser power. The dashed black line is a constant-value fit to 
the data. Same data as in Fig. 4D. The data points and their corresponding error bars denote the average and standard 
deviation, respectively, from 𝑁 = 5 independent measurements. H) Rotational trap stiffness 𝜅𝜃 obtained from the AD 
fits in F) versus laser power. The dashed black line is a linear fit to the data. Same data as in Fig. 4E. 
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Figure S9. OTW data acquired under less favourable environmental conditions. The color-coding is as follows: 40, 
60, and 80 mW, going from dark red-brown to light brown. A) Zoom-in on the first 0.1 s of the torque traces of 200 s 
each sampled at 100 kHz (corresponding to 2.0 × 107  data points). The traces are offset vertically for clarity. B) 
Histograms over the full traces. The solid black lines are Gaussian fits to the histograms. C) Autocorrelation function 
analysis. The solid black lines are fits to the data, and their extrapolations are shown as dashed black lines. D) Power 
spectrum analysis. E) Angle Allan deviation (AD). Colored lines (circles) reflect the normal AD (octave-sampled 
overlapping AD). The dashed magenta line indicates the thermal limit for the stiffest trap. F) Torque AD. The dashed 
magenta line corresponds to the thermal limit. Note the additional noise component (in contrast to Fig. 4B,C and 
Supplementary Fig. S8E,F) in the range 0.1–20 s, which we attribute to excess air currents present in the setup at the 
time of acquisition. The dash-dotted black lines have slope +1  or 0 , corresponding to linear drift or 1/𝑓  noise, 
respectively. The fitted parameters are displayed in G,H). G) Rotational drag coefficient 𝛾𝜃 obtained from the torque AD 
fits in F) versus laser power. The dashed black line is a constant-value fit to the data. The data points and their 
corresponding error bars denote the average and standard deviation, respectively, from 𝑁 =  5 independent 
measurements. H) Rotational trap stiffness 𝜅𝜃 obtained from the AD fits in F) versus laser power. The dashed black line 
is a linear fit to the data. 
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Figure S10. Comparison of the best achievable torque Allan deviation in the eMTT and OTW. The traces were 

selected from Figs. 3C, 4C to compare the best achievable torque precisions. We record the fluctuations of a MagSense 

bead (𝑑 = 0.7 μm) at 1 mT (dark brown) in eMTT, and a TiO2 cylinder at 10 mW in OTW (dark blue). Colored lines 

(circles) reflect the normal AD (octave-sampled overlapping AD). The dashed magenta lines indicate the thermal limits. 

The color shading and the corresponding double-sided arrows indicate the averaging times (ranging from the timescale 

at which the Allan deviation peaks to that at which unwanted noise starts to dominate) over which the eMTT (light 

yellow) and the OTW (light blue) permit meaningful torque measurement. The range of averaging times in which the 

instruments’ torque precision overlaps is shown in light green. The dashed black line corresponds to a torque precision 

of 1 pNnm. 
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Figure S11. Comparison of efficiency in overlapping Allan variance computation. The overlapping Allan variance 
computation times as a function of the number of input data points 𝑛. The blue circles and red squares reflect the use 
of all available integration times ( 𝑚𝜏𝑠 ; 𝑚 = 𝑖𝑛𝑡𝑒𝑔𝑒𝑟 ) and octave-sampled integration times ( 𝑚𝜏𝑠 ; 𝑚 = 2𝑖𝑛𝑡𝑒𝑔𝑒𝑟 ), 
respectively. The solid colored lines are power-law fits to the data, 𝑐𝑜𝑚𝑝𝑢𝑡𝑎𝑡𝑖𝑜𝑛 𝑡𝑖𝑚𝑒 ∝ 𝑛𝛼(α = 2.0 and 1.1 for blue 
circles and red rectangles, respectively), with their extrapolations shown as dashed colored lines. The data points and 
their corresponding error bars denote the average and standard deviation, respectively, for 𝑁 = 3 computations. 
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