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S1. Supplementary Theory 

A. Helix and helicity 

Assume a circular helix whose helical axis coincides with the z-axis of a fixed Cartesian coordinate 

system. The points s constituting the helix can be parameterized by the relation 

𝐬 = (𝑟 cos𝜔, 𝑟 sin𝜔,
𝑙

2𝜋
𝜔)         (A1) 

where r is the helix radius, l is the pitch and ω is the parameter. The unit tangent vector t is 

𝐭 = 𝑑𝐬/|𝑑𝐬|           (A2) 

where 

𝑑𝐬 = (−𝑟 sin𝜔, 𝑟 cos𝜔,
𝑙

2𝜋
) 𝑑𝜔         (A3) 

|𝑑𝐬| = √𝑟2 + (𝑙/2𝜋)2𝑑𝜔         (A4) 

Substituting eq. A3 and A4 into eq. A2, we find 

𝐭 =
1

√𝑟2 + (𝑙/2𝜋)2
(−𝑟 sin𝜔, 𝑟 cos𝜔,

𝑙

2𝜋
) 

            (A5) 

The angle 𝛽𝑐 between the tangent vector t and the helix axis vector, that is, the coordinate vector z = 

(0,0,1), is given by 

cos𝛽𝑐 = 𝐭 ∙ 𝐳           (A6) 

Inserting the expression for t (eq. A5) into the right-hand side, we obtain 

cos𝛽𝑐 =
𝑙

2𝜋√𝑟2 + (𝑙/2𝜋)2
 

            (A7) 

On the other hand, the helix contour length 𝐿𝑐 between its points A corresponding to 𝜔 = 0 and B 

corresponding to 𝜔 = Ω is computed as 

𝐿𝑐 = ∫ |𝑑𝐬|
𝐵

𝐴
           (A8) 

Inserting the parameterization of the length element |𝑑𝐬| from eq. A4, we have 
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𝐿𝑐 = ∫ √𝑟2 + (𝑙/2𝜋)2𝑑𝜔
Ω

0
         (A9) 

which yields 

𝐿𝑐 = √𝑟2 + (𝑙/2𝜋)2Ω          (A10) 

The length 𝐿ℎ of the same helical fragment but measured along the helical axis, i.e. the spring length, 

is given by 

𝐿ℎ = ∫ 𝐳 ∙ 𝑑𝐬
𝐵

𝐴
           (A11) 

Inserting the expression for 𝑑𝐬 (eq. A3) into the right-hand side, we find 

𝐿ℎ = ∫
𝑙

2𝜋
𝑑𝜔

Ω

0
           (A12) 

which yields 

𝐿ℎ =
𝑙

2𝜋
Ω           (A13) 

Thus, it follows from eq. A10 and A13 that 

𝐿ℎ
𝐿𝑐

=
𝑙

2𝜋√𝑟2 + (𝑙/2𝜋)2
 

            (A14) 

and, comparing this with eq. A7, we have the final result 

cos𝛽𝑐 =
𝐿ℎ
𝐿𝑐

 

            (A15) 

In the computations described in the main text, the contour length 𝐿𝑐 is approximated by L, the sum of 

basepair center distances, and 𝛽𝑐 is approximated by 𝛽 defined by 

cos𝛽 =
𝐿ℎ
𝐿

 

            (A16) 
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B. Ensemble average of a function 

Consider a quantity y as a function of n variables 𝑥1, … , 𝑥𝑛. We introduce the vector 

𝐱 = (𝑥1, … , 𝑥𝑛)           (B1) 

and write 

𝑦 = 𝑓(𝐱).           (B2) 

Expanding the function f in a Taylor series and keeping only terms up to the second order, we obtain 

𝑦 = 𝑓(𝐱̂) +∑
𝜕𝑓

𝜕𝑥𝑖
(𝐱̂)(𝑥𝑖 − 𝑥𝑖) + ∑

𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
(𝐱̂)(𝑥𝑖 − 𝑥𝑖)(𝑥𝑗 − 𝑥𝑗)

6𝑁

𝑖,𝑗=1

6𝑁

𝑖=1

 

            (B3) 

where we introduced a reference vector  

𝐱̂ = (𝑥1, … , 𝑥𝑛)           (B4) 

for which we choose the ensemble average of x at the reference temperature T0, 

𝐱̂ = 〈𝐱〉𝑇0.           (B5) 

Taking now the ensemble average of y at temperature T, we get 

〈𝑦〉𝑇 = 𝑓(𝐱̂) +∑
𝜕𝑓

𝜕𝑥𝑖
(𝐱̂)(〈𝑥𝑖〉𝑇 − 𝑥𝑖) + ∑

𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
(𝐱̂)〈(𝑥𝑖 − 𝑥𝑖)(𝑥𝑗 − 𝑥𝑗)〉𝑇

6𝑁

𝑖,𝑗=1

6𝑁

𝑖=1

 

            (B6) 

The first two terms on the right-hand side are a Taylor expansion up to the first order of 𝑓(〈𝐱〉𝑇). 

Assuming that the coordinate means change only slightly with temperature, that is, 〈𝐱〉𝑇 is close to 

𝐱̂ = 〈𝐱〉𝑇0, we can write, to a high precision, 

𝑓(𝐱̂) +∑
𝜕𝑓

𝜕𝑥𝑖
(𝐱̂)(〈𝑥𝑖〉𝑇 − 𝑥𝑖) = 𝑓(〈𝐱〉𝑇)

6𝑁

𝑖=1

 

            (B7) 

The quadratic term can be simplified as follows. Writing 

𝑥𝑖 − 𝑥𝑖 = 𝑥𝑖 − 〈𝑥𝑖〉𝑇 + 〈𝑥𝑖〉𝑇 − 𝑥𝑖        (B8) 
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we find 

〈(𝑥𝑖 − 𝑥𝑖)(𝑥𝑗 − 𝑥𝑗)〉𝑇 = 𝐶𝑖𝑗 + (〈𝑥𝑖〉𝑇 − 𝑥𝑖)(〈𝑥𝑗〉𝑇 − 𝑥𝑗)      (B9) 

where 

𝐶𝑖𝑗 = 〈(𝑥𝑖 − 〈𝑥𝑖〉𝑇)(𝑥𝑗 − 〈𝑥𝑗〉𝑇)〉𝑇        (B10) 

are the elements of the coordinate covariance matrix C at temperature T, which is associated with the 

stiffness matrix K by the relation 

𝐶𝑖𝑗 = 𝑘𝐵𝑇[𝐾
−1]𝑖𝑗          (B11) 

where the superscript −1 denotes the matrix inverse and 𝑘𝐵 is the Boltzmann constant. We further 

neglect the term (〈𝑥𝑖〉𝑇 − 𝑥𝑖)(〈𝑥𝑗〉𝑇 − 𝑥𝑗) which is quadratic in the temperature differences of the 

coordinate means and is supposed to be very small. Taken together, we have the approximation 

〈𝑦〉𝑇 = 𝑓(〈𝐱〉𝑇) + 𝑇 [𝑘𝐵 ∑
𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
(𝐱̂)[𝐾−1]𝑖𝑗

6𝑁

𝑖,𝑗=1

] 

            (B12) 

If the stiffness is temperature independent, then the term in the square braces is a constant. However, 

as shown in ref.  (1), the entropic contribution to the deformation free energy cannot be neglected and 

therefore the stiffness also depends on temperature. We assume a linear dependence of the form 

[𝐾−1]𝑖𝑗 = 𝑎𝑖𝑗 + (𝑇 − 𝑇0)𝑏𝑖𝑗         (B13) 

Substituting this into the previous equation and keeping only terms linear in (𝑇 − 𝑇0), we obtain 

〈𝑦〉𝑇 = 𝑓(〈𝐱〉𝑇) + 𝑎 + 𝑏(𝑇 − 𝑇0)        (B14) 

where the constants a and b are given by 

𝑎 = 𝑘𝐵𝑇0 ∑
𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
(𝐱̂)𝑎𝑖𝑗

6𝑁

𝑖,𝑗=1

 

𝑏 = 𝑘𝐵 ∑
𝜕2𝑓

𝜕𝑥𝑖𝜕𝑥𝑗
(𝐱̂)(𝑎𝑖𝑗 + 𝑇0𝑏𝑖𝑗).

6𝑁

𝑖,𝑗=1

 

            (B15) 

The constants a and b can be inferred using eq. B14 by least squares fitting of the data. If 
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𝑎 ≈ 𝑏(𝑇 − 𝑇0) ≈ 0          (B16) 

then we simply have the estimate 

〈𝑦〉𝑇 = 𝑓(〈𝐱〉𝑇)           (B17) 

that is, the operation of ensemble averaging and the function f can be interchanged. This was the 

approximation used in our previous study (2) and derived there using a slightly different argument. 

However, in the cases studied in the present work we often have 

𝑎 ≠ 0,  𝑏(𝑇 − 𝑇0) ≈ 0          (B18) 

and eq. B14 then implies the estimate 

〈𝑦〉𝑇 − 〈𝑦〉𝑇0 = 𝑓(〈𝐱〉𝑇) − 𝑓(〈𝐱〉𝑇0).        (B19) 

Thus, in this approximation, the difference of the means of a function can be replaced by the 

difference of the function of the means. This enables one to study the effect of individual ensemble 

averaged components of x on the change of y, as done in the main text. 

C. Helical rise and the local coordinates 

Consider a basepair step consisting of two successive base pairs, 1 and 2, equipped with reference 

points O1 and O2 and right-handed, orthonormal frames (x1, y1, z1) and (x2, y2, z2). According to the 

3DNA definition (3), the helical rise h is the projection of the basepair center distance 𝑑 = |O2 − O1| 

onto the local helical axis (in what follows we drop the basepair step index a for simplicity – we write 

h instead of h
a
, d instead of d

a
, β instead of β

a
 and so on). The coordinate systems associated with the 

two base pairs are representesented by matrices of column component vectors R1 and R2, related to 

each other by a relative rotation represented by the rotation matrix R, 

𝑅2 = 𝑅1𝑅           (C1) 

Working in the coordinate system (x1, y1, z1) of base pair 1 implies that 

𝑅1 = 𝐼, 𝑅2 = 𝑅           (C2) 

where I is the identity matrix. In the 3DNA coordinate definition (3), R takes the form 

𝑅 = 𝑅𝑧 (
Ω

2
− 𝜙)𝑅𝑦(Γ)𝑅𝑧 (

Ω

2
+ 𝜙)        (C3) 

where Ω is the local twist, Γ the local bending angle, and ϕ the phase angle determining the bending 

direction. Here Rz and Ry are the rotation matrices about the coordinate axes z and y which for any 

angle γ are given by 
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𝑅𝑧(𝛾) = (
𝑐 −𝑠 0
𝑠 𝑐 0
0 0 1

),  𝑅𝑦(𝛾) = (
𝑐 0 𝑠
0 1 0
−𝑠 0 𝑐

)      (C4) 

where 𝑐 = cos 𝛾, 𝑠 = sin𝛾. The angles Γ and ϕ are related to roll (ρ) and tilt (τ) as 

𝜌 = Γ cos𝜙,   𝜏 = Γ sin𝜙         (C5) 

The translational coordinates shift, slide and rise are the components of the vector O2 − O1 in the 

middle frame (xm, ym, zm) defined by the matrix Rm of its column component vectors. In the coordinate 

system of base pair 1, Rm takes the form (3) 

𝑅𝑚 = 𝑅𝑧 (
Ω

2
− 𝜙)𝑅𝑦(Γ/2)𝑅𝑧(𝜙)        (C6) 

We will adopt a simplified model of DNA geometry. We first assume that bending takes place 

exclusively via roll (i.e. tilt is always zero), so that the phase angle ϕ is 0 or π. This is justified by the 

fact that tilt is usually very small in real DNA and its thermal change is also much smaller on average 

than that of roll (Figure S2). Thus, the bending angle Γ is just the magnitude of roll, and we assume it 

to be small, so that we can adopt the approximations cos Γ ≈ 1, sin Γ ≈ Γ. We further assume that 

shift and slide are both zero, so that O2 − O1is parallel to zm, the middle frame z-axis, and d coincides 

with rise. This is justified, since shift and slide in DNA are usually small and the temperature 

dependence of d is dominated by that of rise (Figure S3). 

The vector v of the local helical axis, that is, the axis of the screw transformation connecting the two 

basepair coordinate systems, is given by (3) 

𝐯 = (𝐱2 − 𝐱1) × (𝐲2−𝐲1)         (C7) 

and the helical rise is defined as 

ℎ = 𝑑 cos𝛽           (C8) 

where β, the local helicity, is the angle between the vector O2 − O1 and the local helical axis vector v. 

In the approximations stated above, we have 

cos𝛽 = 𝐯 ∙ 𝐳𝑚/|𝐯|          (C9) 

Inserting the component vectors into eq. C7 and C9 and performing the computation, we find eq. C8 to 

take the form 

ℎ = 𝑑 (1 −
Γ2

2Ω2)           (C10) 

where we also used the approximation sin
Ω

2
≈

Ω

2
 . Eq. C10 is identical to eq. 11 in the main text. 
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S2. Supplementary Methods 

A 33 base pair (bp) DNA duplex of the sequence 

GAGAT-GCTAA-CCCTG-ATCGC-TGATT-CCTTG-GAC 

(here divided into 5 bp blocks for better readability) was built in the canonical B-DNA fiber 

diffraction form (Arnott B-DNA (4)) using the nab module of Amber. The Amber OL15 force field 

(5) was used to parameterize the DNA internatomic interactions. The duplex was then solvated in a 

truncated octahedron box using the SPC/E water model (6), with a minimal distance of 10 Å between 

the DNA and the box walls. In the next step, K+ and Cl- ions parameterized according to Dang (7) 

were added to the system to ensure its charge neutrality and to create an excess concentration of 150 

mM KCl, close to the physiological value. In total, 174 K+, 110 Cl- and ca. 40,000 water molecules 

were included in the simulated system, which contains roughly 123,000 atoms. The ion positions were 

randomized using the cpptraj module of Amber, so that the ions were no closer than 5 Å from the 

DNA and 3.5 Å from each other. 

The equilibration was performed by first minimizing the energy of the system (500 steps of steepest 

descent and 500 steps of conjugated gradients), restraining the DNA atoms to their initial positions by 

harmonic restraints using a 25 kcal.mol
-1

.Å
-2

 force constant. This was followed by heating the system 

from the initial 100 K to 300 K in a 100 ps NVT molecular dynamics, using the Berendsen thermostat 

with the default coupling time of 1 ps and 25 kcal.mol
-1

.Å
-2

 restraints on the DNA. Further, six rounds 

of energy minimization, each followed by a 50 ps NVT dynamics at 300 K, were performed, gradually 

releasing the DNA restrains from 5 kcal.mol
-1

.Å
-2

 through 4, 3, 2, 1 to 0.5 kcal.mol
-1

.Å
-2

. Finally, 50 ps 

of unrestrained NpT dynamics at 300 K and the pressure of 1 atm, using Berendsen thermostat and 

barostat with coupling times of 5 ps, was performed. 

The production was performed in the NpT ensemble at the target temperature (280, 290, 300, 310 or 

320 K) and the 1 atm pressure using the Berendsen thermostat and barostat with 5 ps coupling times, 

periodic boundary conditions, the Particle Mesh Ewald method to compute electrostatic interactions, 

and SHAKE restraints on hydrogen atoms. The trajectories were prolonged to 1 µs each. In the 

production phase, mass repartitioning as implemented in Amber was introduced, which allowed us to 

use a 4 fs time step to integrate the equations of motion. The pmemd module of Amber was used for 

the equilibration and production phases. 
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S3. Supplementary Figures 

 

 

 

 

Figure S1. Conformational descriptors used in this work. 
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Figure S2. Temperature dependencies of local basepair step coordinates . Values for individual steps 

between base pairs 3 and 31 (28 steps in total) are shown. Since tilt and shift change sign upon change 

of the strand selected as the reference strand, the sign of their thermal slopes also depend on this 

choice. Therefore, absolute values of the tilt and shift thermal slopes are shown. Means over the 28 

steps, and standard deviations indicating the spread of the 28 values, are displayed. 
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Figure S3. Effect of approximating the end-to-end twist by accumulated local twists (left) and the 

wire length by accumulated local rises (right). Ensemble averages for each temperature, approximated 

by averages over the MD trajectory, are shown. 

 

 

 

 

Figure S4. Local radii of the basepair centerline helix (left) and local helicities (right) at 27 °C. 

Ensemble averages approximated by the means over the MD trajectory are shown. The standard 

deviations indicate the spread of values of the individual steps. 
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Figure S5. Local helical rises, distances between neighbouring basepair centres, and local helical 

twists at 27 °C. The standard deviations indicate the spread of values of the individual steps. 
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Figure S6. Effect of the approximation used in eq. 7 of the main text. The ensemble average of the 

difference in wire length L (left-hand side of the equation, red) is estimated by the difference of the 

function of the ensemble averages of centerline radius, helical rise and helical twist (right-hand side of 

the equation, green). The data in the Figure indicate good quality of the approximation. Ensemble 

averages are estimated by averages over the MD trajectory. 

 

 

 

Figure S7. Effect of helical coordinates on the thermal expansion of the wire length L. In eq. 7, each 

type of coordinates was changed individually, while the others were kept at their ensemble averaged 

values for T = T0 (27 °C). The change actually observed in the MD data (red) is well approximated by 

changing the helical radii 〈𝑟𝑎〉𝑇 only (blue), while the effect of the helical twists 〈𝜔𝑎〉𝑇 (magenta) and 

helical rises 〈ℎ𝑎〉𝑇 (yellow) is very weak.  
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Figure S8. Stability of the hydrogen bonds  connecting the two bases in a Watson-Crick pair. Heavy 

atom distances exceeding 4 Å are in yellow. Black vertical lines separate individual pairs. 
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Figure S9. Time series of the backbone torsion angles α, β and γ at 27 ºC. The angles mostly occupy 

the canonical domain (α/β/γ in g-/t/g+) but also show rare and short-lived flips to non-canonical 

values. 
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Figure S10. Time series of the backbone torsion angles ε and ζ at 27 ºC. Frequent flips between the BI 

(ε/ζ in t/g-) and BII (ε/ζ in g-/t) are observed. Besides that, a rare non-canonical state of ε/ζ in g+/g+ 

accompanied by α in t (Figure S9) is observed. 
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Figure S11. Temperature dependencies of DNA local coordinates filtered for the BI state. For each 

step, only those MD snapshots were taken into account in which the backbone fragments in the step 

and in its 5’ and 3‘ neighbouring steps (6 fragments in total) were all in the BI state. The mean values 

are similar to those obtained without this filtering (Figure S2). 
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Figure S12. Mean values of the sugar puckers (A) and their temperature dependencies (B). While the 

means for pyrimidines (Y) are systematically lower than those for purines (R), no such distinction can 

be observed for the temperature slopes. These are rather noisy, but the sequence averaged pucker 

clearly decreases with temperature (Figure 6 of the main text). 

 

 

 

 

Figure S13.  GC content in 10 bp sliding windows covering the portion of the oligomer between 

basepair 3 and 31 (29 bp in total) examined in the main text. The whole portion has 52 % GC while 

the GC content of the windows varies between 40 and 70 %. 
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Figure S14. Thermal expansion coefficients for sequences in 10 bp sliding windows. The means over 

the values are shown together with the values for the whole 29 bp portion examined in the main text. 
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Figure S15. Thermal expansion coefficients computed for a 200 ns sliding window. The mean of the 

window values and the value for the whole microsecond trajectory are shown. 
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